The asteroid exploration opportunities are searched and calculated with launch dates in 2006 to2010, and with asteroid Ivar 1627 as the target, the spacecraft and its subsystems are designed and analyzed,and the trans...The asteroid exploration opportunities are searched and calculated with launch dates in 2006 to2010, and with asteroid Ivar 1627 as the target, the spacecraft and its subsystems are designed and analyzed,and the transfer trajectory is designed using △VEGA technology for the asteroid rendezvous. The design resultssatisfied the energy requirements for small explorers.展开更多
Designed for planetary exploration,a spherical mobile robot BHQ-1 was briefly introduced.The mo-tion model of BHQ-1 was established and quasi-velocities were introduced to simplify some dynamic quan-tities.Based on th...Designed for planetary exploration,a spherical mobile robot BHQ-1 was briefly introduced.The mo-tion model of BHQ-1 was established and quasi-velocities were introduced to simplify some dynamic quan-tities.Based on the model,the time- and energy-based optimal trajectory of BHQ-1 was planned withHamiltonian function. The effects of three key coefficients on the shape and direction of the planned tra-jectory were discussed by simulations.Experimental result of the robot ability in avoiding an obstacle waspresented to validate the trajectory planning method.展开更多
A novel radar-based system for longwall coal mine machine localisation is described. The system, based on a radar-ranging sensor and designed to localise mining equipment with respect to the mine tunnel gate road infr...A novel radar-based system for longwall coal mine machine localisation is described. The system, based on a radar-ranging sensor and designed to localise mining equipment with respect to the mine tunnel gate road infrastructure, is developed and trialled in an underground coal mine. The challenges of reliable sensing in the mine environment are considered, and the use of a radar sensor for localisation is justified. The difficulties of achieving reliable positioning using only the radar sensor are examined. Several probabilistic data processing techniques are explored in order to estimate two key localisation parameters from a single radar signal, namely along-track position and across-track position, with respect to the gate road structures. For the case of across-track position, a conventional Kalman filter approach is sufficient to achieve a reliable estimate. However for along-track position estimation, specific infrastructure elements on the gate road rib-wall must be identified by a tracking algorithm. Due to complexities associated with this data processing problem, a novel visual analytics approach was explored in a 3D interactive display to facilitate identification of significant features for use in a classifier algorithm. Based on the classifier output, identified elements are used as location waypoints to provide a robust and accurate mining equipment localisation estimate.展开更多
The basic configuration of a new type of subsea pipeline connector was proposed based on the press-fitting principle, and a parametric finite element model was created using APDL language in ANSYS. Combining the finit...The basic configuration of a new type of subsea pipeline connector was proposed based on the press-fitting principle, and a parametric finite element model was created using APDL language in ANSYS. Combining the finite element model and optimization technology, the dimension optimization aiming at obtaining the minimum loading force and the optimum sealing performance was designed by the zero order optimization method. Experiments of the optimized connector were carried out. The results indicate that the optimum structural design significantly improved the indicators of the minimum loading force and sealing performance of the connector.展开更多
To implement high quality tunneling injection quantum dot lasers, effects of primary factors on performance of the tunneling injection quantum dot lasers were investigated. The considered factors were tunneling probab...To implement high quality tunneling injection quantum dot lasers, effects of primary factors on performance of the tunneling injection quantum dot lasers were investigated. The considered factors were tunneling probability, tun- neling time and carriers thermal escape time from the quantum well. The calculation results show that with increas- ing of the ground-state energy level in quantum well, the tunneling probability increases and the tunneling time decreases, while the thermal escape time decreases because the ground-state energy level is shallower. Longitudinal optical phonon-assisted tunneling can be an effective method to solve the problem that both the tunneling time and the thermal escape time decrease simultaneously with the ground-state energy level increasing in quantum well.展开更多
To maximize the throughput of frequency-selective multicast channel, the minimum-phase Finite Impulse Response (FIR) precoder design is investigated in this paper. This problem can be solved in two steps. Firstly, we ...To maximize the throughput of frequency-selective multicast channel, the minimum-phase Finite Impulse Response (FIR) precoder design is investigated in this paper. This problem can be solved in two steps. Firstly, we focus on designing a nonminimum-phase FIR precoder under the criterion of maximizing the throughput, and develop two efficient algorithms for the FIR precoder design from perspectives of frequency domain and time domain. In the second step, based on the theory of spectral factorization, the nonminimum-phase FIR precoder is transformed into the corresponding minimum-phase FIR precoder by a classic iterative algorithm without affecting the throughput. Numerical results indicate that the achievable rate of the proposed design has remarkable improvement over that of existing schemes, moreover, the group delay introduced by the FIR precoder is minimized.展开更多
An approach to design multi-channel cylinder dryer was proposed. The heat transfer performance and flow characteristic under various structural parameters were analyzed. First, an experiment was designed and set up to...An approach to design multi-channel cylinder dryer was proposed. The heat transfer performance and flow characteristic under various structural parameters were analyzed. First, an experiment was designed and set up to measure the condensing heat transfer coefficient and the pressure drop in order to ,~erify the applicability of the Cavallini's correlation. Then, the relationship among the count of channels, aspect ratio, spacing ratio, width, height and hydraulic diameter of a channel was given. Finally, the correlation of condensing heat transfer and the homogeneous model was introduced in order to observe the heat transfer performance and flow characteristic of the multi-channel cylinder dryer affected by different structures. The study reveals that the structural parameters including count of channels, aspect ratio, spacing ratio of a channel dramatically influence the condensation heat transfer coefficient and frictional resistance of the steam. Based on the selected paper machine, it is suggested that the overall performance of the multi-channel cylinder dryer is best if the count of channels is 150-200, the aspect ratio is 1 : 3 and the spacing ratio is 1 : 1-1 : 3.展开更多
A screw drive in-pipe robot is promising inspection equipment for small pipes. However, most of the existing screw drive in-pipe robots have problems of motion interference and slipping inside curved or irregular pipe...A screw drive in-pipe robot is promising inspection equipment for small pipes. However, most of the existing screw drive in-pipe robots have problems of motion interference and slipping inside curved or irregular pipes. These problems result from the coupled relations among the steering motion, the motion speed and the load ability of the robot. In order to deal with the problems, the axiomatic design (AD) theory is applied to evaluate and analyze the existing designs. Then an uncoupled con- cept design based on the AD theory is proposed and the complete AD decomposition process is presented. After that, the pro- posed robot based on a tri-axial differential angle modulation mechanism is designed to realize the uncoupled concept. Finally, the uncoupled property is verified in a dynamics simulation system. The simulation results indicate that the mc tion speed, load ability and steering motion of the proposed robot can be adjusted individually compared with the robots taat have inclin- ing-angle-fixed rollers. Owing to the uncoupled design, the proposed robot can mechanically adapt to straight pipes and curved pipes with less roller slipping.展开更多
A method for spacecraft formation flying (SFF) design and control near libration point orbits was developed by making use of the Floquet theory for periodic orbits. Firstly, the Floquet theory used in libration point ...A method for spacecraft formation flying (SFF) design and control near libration point orbits was developed by making use of the Floquet theory for periodic orbits. Firstly, the Floquet theory used in libration point orbits was introduced and the coefficients of four Floquet periodic modes were proved to be nearly constant when the amplitude in z direction of earth-moon L1 halo orbits is less than 20000 km. On this basis, a configuration design approach to SFF in L1 halo orbits was proposed, and several types of special configurations were obtained with periodic mode 3 and mode 5 or mode 4 and mode 6. Then, in order to control the SFF configuration concisely, those coefficients of the 5 modes (except the stable one) must be kept constant. A stationkeeping method for SFF was developed, which controls 5 Floquet modes simultaneously. Finally, simulations showed that the Floquet-based approach of configuration design and control for SFF is effective, simple and convenient. The research may be of value for deep space explorations.展开更多
Mass transfer and catalyst recovery are two crucial issues in solid base catalysis,while the cumbersome operation steps and the associated time and energy penalties are still inevitable for conventional catalysts.Achi...Mass transfer and catalyst recovery are two crucial issues in solid base catalysis,while the cumbersome operation steps and the associated time and energy penalties are still inevitable for conventional catalysts.Achieving the technical upgrades through catalyst design is desirable but challenging because of the difficulty in satisfying diverse demands of different steps.In this work,a magnetically responsive solid base catalyst with the rod-like nanostructure was developed.The rod-like solid base catalysts are composed of Fe_(3)O_(4) cores,silica shells and calcium oxide active sites.The functions of magnetic recovery and stirring were integrated into the catalyst,which applies in both the general catalytic processes and microchannel reactors given their nanoscales.When applied to the synthesis of dimethyl carbonate by onestep transesterification of methanol and ethylene carbonate,an apparent enhancement on turnover frequency value(33.1 h^(−1))was observed for nano-stirring compared with that tested without stirring(12.1 h^(−1))within 30 min.The present catalysts may open up new avenues in the development of advanced solid base catalysts.展开更多
文摘The asteroid exploration opportunities are searched and calculated with launch dates in 2006 to2010, and with asteroid Ivar 1627 as the target, the spacecraft and its subsystems are designed and analyzed,and the transfer trajectory is designed using △VEGA technology for the asteroid rendezvous. The design resultssatisfied the energy requirements for small explorers.
基金the National Natural Science Foundation of China(No.50705003)the National High Technology Research and Development Programme of China(No.2007AA04Z252)
文摘Designed for planetary exploration,a spherical mobile robot BHQ-1 was briefly introduced.The mo-tion model of BHQ-1 was established and quasi-velocities were introduced to simplify some dynamic quan-tities.Based on the model,the time- and energy-based optimal trajectory of BHQ-1 was planned withHamiltonian function. The effects of three key coefficients on the shape and direction of the planned tra-jectory were discussed by simulations.Experimental result of the robot ability in avoiding an obstacle waspresented to validate the trajectory planning method.
文摘A novel radar-based system for longwall coal mine machine localisation is described. The system, based on a radar-ranging sensor and designed to localise mining equipment with respect to the mine tunnel gate road infrastructure, is developed and trialled in an underground coal mine. The challenges of reliable sensing in the mine environment are considered, and the use of a radar sensor for localisation is justified. The difficulties of achieving reliable positioning using only the radar sensor are examined. Several probabilistic data processing techniques are explored in order to estimate two key localisation parameters from a single radar signal, namely along-track position and across-track position, with respect to the gate road structures. For the case of across-track position, a conventional Kalman filter approach is sufficient to achieve a reliable estimate. However for along-track position estimation, specific infrastructure elements on the gate road rib-wall must be identified by a tracking algorithm. Due to complexities associated with this data processing problem, a novel visual analytics approach was explored in a 3D interactive display to facilitate identification of significant features for use in a classifier algorithm. Based on the classifier output, identified elements are used as location waypoints to provide a robust and accurate mining equipment localisation estimate.
文摘The basic configuration of a new type of subsea pipeline connector was proposed based on the press-fitting principle, and a parametric finite element model was created using APDL language in ANSYS. Combining the finite element model and optimization technology, the dimension optimization aiming at obtaining the minimum loading force and the optimum sealing performance was designed by the zero order optimization method. Experiments of the optimized connector were carried out. The results indicate that the optimum structural design significantly improved the indicators of the minimum loading force and sealing performance of the connector.
基金the National Natural Science Foundationof China (Grant No. 60476042) and Tianjin City Research Founda-tion for Key Basic Research, China (Grant No. 06YFJZJC01100)
文摘To implement high quality tunneling injection quantum dot lasers, effects of primary factors on performance of the tunneling injection quantum dot lasers were investigated. The considered factors were tunneling probability, tun- neling time and carriers thermal escape time from the quantum well. The calculation results show that with increas- ing of the ground-state energy level in quantum well, the tunneling probability increases and the tunneling time decreases, while the thermal escape time decreases because the ground-state energy level is shallower. Longitudinal optical phonon-assisted tunneling can be an effective method to solve the problem that both the tunneling time and the thermal escape time decrease simultaneously with the ground-state energy level increasing in quantum well.
基金Supported by the National Natural Science Foundation of China (No. 61271272)the National Science and Technology Special Projects of China (No. 2012ZX03001007002)the National High Technology Research and Development Program of China (863 Program) (No. 2012AA01A502)
文摘To maximize the throughput of frequency-selective multicast channel, the minimum-phase Finite Impulse Response (FIR) precoder design is investigated in this paper. This problem can be solved in two steps. Firstly, we focus on designing a nonminimum-phase FIR precoder under the criterion of maximizing the throughput, and develop two efficient algorithms for the FIR precoder design from perspectives of frequency domain and time domain. In the second step, based on the theory of spectral factorization, the nonminimum-phase FIR precoder is transformed into the corresponding minimum-phase FIR precoder by a classic iterative algorithm without affecting the throughput. Numerical results indicate that the achievable rate of the proposed design has remarkable improvement over that of existing schemes, moreover, the group delay introduced by the FIR precoder is minimized.
基金Acknowledgements This project is supported by the National Natural Science Foundation of China (Grant No. 51375286), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2012JZ7002) and the key scientific and technological innovation team fund of Shaanxi Province of China (Program No. 2014KCT- 15).
文摘An approach to design multi-channel cylinder dryer was proposed. The heat transfer performance and flow characteristic under various structural parameters were analyzed. First, an experiment was designed and set up to measure the condensing heat transfer coefficient and the pressure drop in order to ,~erify the applicability of the Cavallini's correlation. Then, the relationship among the count of channels, aspect ratio, spacing ratio, width, height and hydraulic diameter of a channel was given. Finally, the correlation of condensing heat transfer and the homogeneous model was introduced in order to observe the heat transfer performance and flow characteristic of the multi-channel cylinder dryer affected by different structures. The study reveals that the structural parameters including count of channels, aspect ratio, spacing ratio of a channel dramatically influence the condensation heat transfer coefficient and frictional resistance of the steam. Based on the selected paper machine, it is suggested that the overall performance of the multi-channel cylinder dryer is best if the count of channels is 150-200, the aspect ratio is 1 : 3 and the spacing ratio is 1 : 1-1 : 3.
基金supported by the National Natural Science Foundation of China(Grant No.61273345)
文摘A screw drive in-pipe robot is promising inspection equipment for small pipes. However, most of the existing screw drive in-pipe robots have problems of motion interference and slipping inside curved or irregular pipes. These problems result from the coupled relations among the steering motion, the motion speed and the load ability of the robot. In order to deal with the problems, the axiomatic design (AD) theory is applied to evaluate and analyze the existing designs. Then an uncoupled con- cept design based on the AD theory is proposed and the complete AD decomposition process is presented. After that, the pro- posed robot based on a tri-axial differential angle modulation mechanism is designed to realize the uncoupled concept. Finally, the uncoupled property is verified in a dynamics simulation system. The simulation results indicate that the mc tion speed, load ability and steering motion of the proposed robot can be adjusted individually compared with the robots taat have inclin- ing-angle-fixed rollers. Owing to the uncoupled design, the proposed robot can mechanically adapt to straight pipes and curved pipes with less roller slipping.
基金supported by the National Natural Science Foundation of China (Grant No. 10702078)the National University of Defense Technology Research Program (Grant No. JC08-01-05)
文摘A method for spacecraft formation flying (SFF) design and control near libration point orbits was developed by making use of the Floquet theory for periodic orbits. Firstly, the Floquet theory used in libration point orbits was introduced and the coefficients of four Floquet periodic modes were proved to be nearly constant when the amplitude in z direction of earth-moon L1 halo orbits is less than 20000 km. On this basis, a configuration design approach to SFF in L1 halo orbits was proposed, and several types of special configurations were obtained with periodic mode 3 and mode 5 or mode 4 and mode 6. Then, in order to control the SFF configuration concisely, those coefficients of the 5 modes (except the stable one) must be kept constant. A stationkeeping method for SFF was developed, which controls 5 Floquet modes simultaneously. Finally, simulations showed that the Floquet-based approach of configuration design and control for SFF is effective, simple and convenient. The research may be of value for deep space explorations.
基金supported by the National Natural Science Foundation of China Youth Project(21808110)the financial support of this work by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(21878149,22078155,and 21722606)。
文摘Mass transfer and catalyst recovery are two crucial issues in solid base catalysis,while the cumbersome operation steps and the associated time and energy penalties are still inevitable for conventional catalysts.Achieving the technical upgrades through catalyst design is desirable but challenging because of the difficulty in satisfying diverse demands of different steps.In this work,a magnetically responsive solid base catalyst with the rod-like nanostructure was developed.The rod-like solid base catalysts are composed of Fe_(3)O_(4) cores,silica shells and calcium oxide active sites.The functions of magnetic recovery and stirring were integrated into the catalyst,which applies in both the general catalytic processes and microchannel reactors given their nanoscales.When applied to the synthesis of dimethyl carbonate by onestep transesterification of methanol and ethylene carbonate,an apparent enhancement on turnover frequency value(33.1 h^(−1))was observed for nano-stirring compared with that tested without stirring(12.1 h^(−1))within 30 min.The present catalysts may open up new avenues in the development of advanced solid base catalysts.