期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
THMR-V道路检测算法设计 被引量:4
1
作者 张振武 丁冬花 《微计算机信息》 北大核心 2005年第12Z期115-117,共3页
道路检测是室外移动机器人尤其是智能汽车研究领域的一个重要课题。本文介绍了多功能室外移动机器人THMR-V的道路检测算法,共分为两个部分。结构化道路,采用的是多窗口双阈值法。虽然在该领域已经有许多能够自主驾驶的系统,但很少能有像... 道路检测是室外移动机器人尤其是智能汽车研究领域的一个重要课题。本文介绍了多功能室外移动机器人THMR-V的道路检测算法,共分为两个部分。结构化道路,采用的是多窗口双阈值法。虽然在该领域已经有许多能够自主驾驶的系统,但很少能有像THMR-V达到150km/h;非结构化道路,采用的则是基于数学形态学的区域分割法。文中详细介绍了算法的实现。 展开更多
关键词 移动机器人 道路检测算法 数学形态学 THMR—V
下载PDF
基于全卷积神经网络和点云的道路检测算法
2
作者 陈佳琪 苏治宝 +1 位作者 赵熙俊 索旭东 《车辆与动力技术》 2022年第1期28-34,共7页
传统利用视觉传感器进行道路检测的算法受到环境光影响明显,难以在实际驾驶环境进行应用.本研究基于全卷积神经网络和激光雷达点云提出了一种道路检测算法,通过将点云进行投影,栅格化计算统计学特征,将无序的点云转化为全卷积神经网络... 传统利用视觉传感器进行道路检测的算法受到环境光影响明显,难以在实际驾驶环境进行应用.本研究基于全卷积神经网络和激光雷达点云提出了一种道路检测算法,通过将点云进行投影,栅格化计算统计学特征,将无序的点云转化为全卷积神经网络能够训练的数据,进而对车辆前方的道路进行检测.在KITTI数据集上的训练和测试表明,该算法在识别精度、计算耗时、感知范围和稳定性上能够满足对于车辆前方道路的检测要求,具有鲁棒性好、全天应用的特点. 展开更多
关键词 全卷积神经网络 激光雷达 点云 道路检测算法
下载PDF
An enhanced iterative joint channel estimation and symbol detection algorithm for OFDM systems 被引量:1
3
作者 韩冰 高西奇 尤肖虎 《Journal of Southeast University(English Edition)》 EI CAS 2003年第2期103-107,共5页
For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced it... For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced iterative joint channel estimation and symbol detection algorithm is proposed to enhance the system throughput and data rate. With lower pilot power, the proposed scheme increases system throughput firstly, and then the channel estimation and symbol detection proceed iteratively within one OFDM symbol to improve the BER performance. In the proposed algorithm, the original channel estimate of each OFDM symbol is based on the channel estimate of the previous OFDM symbol, thus the variation of the mobile channel is traced efficiently, so the number of pilots in the time domain can be reduced greatly. Besides reducing the system overhead, the proposed algorithm is also shown by simulation to give much better BER performance than the conventional iterative algorithm does. 展开更多
关键词 OFDM channel estimation ITERATION multipath fading channel
下载PDF
Road boundary estimation to improve vehicle detection and tracking in UAV video 被引量:1
4
作者 张立业 彭仲仁 +1 位作者 李立 王华 《Journal of Central South University》 SCIE EI CAS 2014年第12期4732-4741,共10页
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no... Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively. 展开更多
关键词 road boundary detection vehicle detection and tracking airborne video unmanned aerial vehicle Dempster-Shafer theory
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部