期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
复杂环境下的轻量化道路目标识别算法研究
1
作者 李振鲁 黄威 孙锴 《计算机工程》 CAS CSCD 北大核心 2024年第4期219-227,共9页
道路目标识别是智能交通系统解决城市拥堵问题的核心技术之一,然而现有算法在复杂交通环境下识别效果较差,存在大量漏检和误检情况,且模型参数量大,不适合在实际场景下部署于资源有限的移动端设备。针对以上问题,提出一种复杂环境下的... 道路目标识别是智能交通系统解决城市拥堵问题的核心技术之一,然而现有算法在复杂交通环境下识别效果较差,存在大量漏检和误检情况,且模型参数量大,不适合在实际场景下部署于资源有限的移动端设备。针对以上问题,提出一种复杂环境下的轻量化道路目标识别算法。基于SSD算法结构设计一种可重构的特征提取网络框架,利用3种轻量化模块分别构建浅层特征提取网络,以自定义的Additional Block构建深层特征提取网络,并分别采用通道注意力机制和轻量化感受野扩大(RFB-L)模块提升模型对各尺寸目标的检测效果。利用自定义的像素与通道信息融合模块实现浅层与深层特征的融合,丰富待检测特征图包含的信息。同时,提出一种多特征融合的学习率调节算法,使得训练过程中模型性能稳定地达到收敛。自制复杂拥堵道路数据集Hohhot_city用于算法训练和测试,与主流算法的对比实验结果表明,该算法性能明显优于参数量同级别的YOLOv4-tiny和YOLOv5s算法,在参数量不到YOLOv5m算法40%的情况下与其检测精度接近,并取得了12.8 ms的推理时间和99.1%的均值平均精度。 展开更多
关键词 道路目标识别 特征提取 特征融合 通道注意力 感受野
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部