The non-stationary behavior, caused by the train rmverrent, is the rmin factor for the variation of high speed railway channel. To measure the tirce-variant effect, the parameter of stationarity interval, in which the...The non-stationary behavior, caused by the train rmverrent, is the rmin factor for the variation of high speed railway channel. To measure the tirce-variant effect, the parameter of stationarity interval, in which the channel keeps constant or has no great change, is adopted based on Zhengzfiou- Xi'an (Zhengxi) passenger dedicated line measurement with different train speeds. The stationarity interval is calculated through the definition of Local Region of Stationarity (LRS) under three train ve- locities. Furthermore, the time non-stationary characteristic of high speed pared with five standard railway channel is corn- Multiple-Input MultipleOutput (MIMO) channel models, i.e. Spatial Channel Model (SCM), extended version of SCM (SCME), Wireless World Initiative New Radio Phase II (WINNERII), International Mobile Teleconmnications-Advanced (IMT-Advanced) and WiMAX models which contain the high speed moving scenario. The stationarity interval of real channel is 9 ms in 80% of the cases, which is shorter than those of the standard models. Hence the real channel of high speed railway changes more rapidly. The stationarity intervals of standard models are different due to different modeling methods and scenario def- initions. And the compared results are instructive for wireless system design in high speed railway.展开更多
The long-term stability of backfill material is the key to retaining roadways successfully. In order to study the rheological deformation of backfill material and its long-term stability, given the visco-elastoplastic...The long-term stability of backfill material is the key to retaining roadways successfully. In order to study the rheological deformation of backfill material and its long-term stability, given the visco-elastoplastic properties of this material, we introduced a softening and a hardening function for a new nonlinear the- ological model with time-varying parameters. Based on this, we presented the instability condition of this model by using the principle of minimum potential energy. Combined with engineering practice, we cal- culated the urlstable time period of backfill material. The results show that the time of instability of the backfill material relate to the initial parameters of the material, "the coefficients decided by temperature and the ratio of the plastic zone of the backfill material. Based on the results of our analysis from the point of view of energy, we can quickly obtain the time of instability of this model from our graphical analysis. The time of instability of the backfill material obtained from our investigation coincides with an actual project.展开更多
China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than ...China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged.展开更多
In this paper, a new lattice model of two-lane traffic flow with the honk effect term is proposed to study the influence of the honk effect on wide moving jams under lane changing. The linear stability condition on tw...In this paper, a new lattice model of two-lane traffic flow with the honk effect term is proposed to study the influence of the honk effect on wide moving jams under lane changing. The linear stability condition on two-lane highway is obtained by applying the linear stability theory. The modified Korteweg-de Vries (KdV) equation near the critical point is derived and the coexisting curves resulted from the modified KdV equation can be described, which shows that the critical point, the coexisting curve and the neutral stability line decrease with increasing the honk effect coe^cient. A wide moving jam can be conceivably described approximately in the unstable region. Numerical simulation is performed to verify the analytic results. The results show that the honk effect could suppress effectively the congested traffic patterns about wide moving jam propagation in lattice model of two-lane traffic flow.展开更多
基金Acknowledgements This work was supported partially by the Beijing Natural Science Foundation under Crant No. 4112048 the Program for New Century Excellent Talents in University under Gant No. NCET-09-0206+4 种基金 the National Natural Science Foundation of China under Crant No. 60830001 the Key Project of State Key Laboratory of Rail Traffic Control and Safety under Crants No. RCS2008ZZ006, No. RCS2011ZZ008 the Program for Changjiang Scholars and Innovative Research Team in University under Crant No. IRT0949 the Project of State Key kab. of Rail Traffic Control and Safety under C~ants No. RCS2008ZT005, No. RCS2010ZT012 the Fundamental Research Funds for the Central Universities under Crants No. 2010JBZ(~8, No. 2011YJS010.
文摘The non-stationary behavior, caused by the train rmverrent, is the rmin factor for the variation of high speed railway channel. To measure the tirce-variant effect, the parameter of stationarity interval, in which the channel keeps constant or has no great change, is adopted based on Zhengzfiou- Xi'an (Zhengxi) passenger dedicated line measurement with different train speeds. The stationarity interval is calculated through the definition of Local Region of Stationarity (LRS) under three train ve- locities. Furthermore, the time non-stationary characteristic of high speed pared with five standard railway channel is corn- Multiple-Input MultipleOutput (MIMO) channel models, i.e. Spatial Channel Model (SCM), extended version of SCM (SCME), Wireless World Initiative New Radio Phase II (WINNERII), International Mobile Teleconmnications-Advanced (IMT-Advanced) and WiMAX models which contain the high speed moving scenario. The stationarity interval of real channel is 9 ms in 80% of the cases, which is shorter than those of the standard models. Hence the real channel of high speed railway changes more rapidly. The stationarity intervals of standard models are different due to different modeling methods and scenario def- initions. And the compared results are instructive for wireless system design in high speed railway.
基金Project (No. 50874089) is supported by the National Natural Science Foundation of ChinaProject (No. 20096121110002) by the College of Doctoral Foundation of the Ministry of Education the Scientific Research Program Funded by Shaanxi Provincial Education Commission (No. 2010JK692)
文摘The long-term stability of backfill material is the key to retaining roadways successfully. In order to study the rheological deformation of backfill material and its long-term stability, given the visco-elastoplastic properties of this material, we introduced a softening and a hardening function for a new nonlinear the- ological model with time-varying parameters. Based on this, we presented the instability condition of this model by using the principle of minimum potential energy. Combined with engineering practice, we cal- culated the urlstable time period of backfill material. The results show that the time of instability of the backfill material relate to the initial parameters of the material, "the coefficients decided by temperature and the ratio of the plastic zone of the backfill material. Based on the results of our analysis from the point of view of energy, we can quickly obtain the time of instability of this model from our graphical analysis. The time of instability of the backfill material obtained from our investigation coincides with an actual project.
基金supported by the National Natural Science Foundation of China (Grant No. 51608542)Project of Science and Technology Research and Development Program of China Railway Corporation (Grant No.2015G001-G)
文摘China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged.
基金Supported by the Key Project of Chinese Ministry of Education under Grant No.211123the Scientific Research Fund of Hunan Provincial Education Department under Grant No.10B072+1 种基金Doctor Scientific Research Startup Project Foundation of Hunan University of Arts and Science under Grant No.BSQD1010the Fund of Key Construction Academic Subject of Hunan Province
文摘In this paper, a new lattice model of two-lane traffic flow with the honk effect term is proposed to study the influence of the honk effect on wide moving jams under lane changing. The linear stability condition on two-lane highway is obtained by applying the linear stability theory. The modified Korteweg-de Vries (KdV) equation near the critical point is derived and the coexisting curves resulted from the modified KdV equation can be described, which shows that the critical point, the coexisting curve and the neutral stability line decrease with increasing the honk effect coe^cient. A wide moving jam can be conceivably described approximately in the unstable region. Numerical simulation is performed to verify the analytic results. The results show that the honk effect could suppress effectively the congested traffic patterns about wide moving jam propagation in lattice model of two-lane traffic flow.