期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于DeepSORT算法的前方道路车辆跟踪研究
1
作者 郭薇 朱泽德 +1 位作者 王道斌 李宸翔 《运筹与模糊学》 2023年第6期7806-7816,共11页
针对部分遮挡、目标漏检等导致的车辆ID频繁切换以及跟踪精度低的问题,本文提出了一种优化DeepSORT跟踪器的方法。一方面设计了S2Net36重识别网络:首先加深重识别网络构建ResNet36网络,提取更深层次的车辆外观特征;其次构建SER模块提取... 针对部分遮挡、目标漏检等导致的车辆ID频繁切换以及跟踪精度低的问题,本文提出了一种优化DeepSORT跟踪器的方法。一方面设计了S2Net36重识别网络:首先加深重识别网络构建ResNet36网络,提取更深层次的车辆外观特征;其次构建SER模块提取目标关键特征以及构建SE-Res2Net模块提取目标区域特征;最后基于ResNet36网络分别融合SER模块与SE-Res2Net模块得到S2Net36重识别网络。另一方面,引入三元组损失函数拉近相同目标不同样本之间的特征距离,通过提取更具有辨别力的车辆外观特征用于数据关联,进而提升对前方道路车辆的跟踪能力。实验结果表明,相比于DeepSORT原始算法,改进的算法的MOTA提高了1.18%,IDF1提升了0.80%,提高了对前方道路车辆的跟踪精度与稳定性,有望为自动驾驶车辆提供技术支持。 展开更多
关键词 道路车辆跟踪 DeepSORT S2Net36 三元组损失
下载PDF
道路交通视频的车辆跟踪算法 被引量:1
2
作者 郭锋 王秉政 陈燕 《郑州轻工业学院学报(自然科学版)》 CAS 2012年第3期74-76,共3页
针对现有车辆跟踪算法准确率不太高的问题,结合具体的道路交通视频的特点,提出了一种车辆跟踪算法.该算法通过道路车辆行驶运动规律,在设计的预测区域内进行搜索,并根据车辆形心、颜色等特征进行匹配和跟踪.实验结果表明,该算法在满足... 针对现有车辆跟踪算法准确率不太高的问题,结合具体的道路交通视频的特点,提出了一种车辆跟踪算法.该算法通过道路车辆行驶运动规律,在设计的预测区域内进行搜索,并根据车辆形心、颜色等特征进行匹配和跟踪.实验结果表明,该算法在满足实时性的要求下,具有较好的稳定性和较高的准确率. 展开更多
关键词 道路交通视频车辆跟踪算法 车体形心 基于区域的目标跟踪
下载PDF
Road boundary estimation to improve vehicle detection and tracking in UAV video 被引量:1
3
作者 张立业 彭仲仁 +1 位作者 李立 王华 《Journal of Central South University》 SCIE EI CAS 2014年第12期4732-4741,共10页
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no... Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively. 展开更多
关键词 road boundary detection vehicle detection and tracking airborne video unmanned aerial vehicle Dempster-Shafer theory
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部