Many studies have been conducted by analyzing crash data that included road profile, site conditions, vehicle configurations and weights, driver behavior, etc.. However, limited studies have been conducted evaluating ...Many studies have been conducted by analyzing crash data that included road profile, site conditions, vehicle configurations and weights, driver behavior, etc.. However, limited studies have been conducted evaluating the impact of these factors on crashes and/or rollover through simulations. This is mainly due to lack of availability of verified full vehicle flexible-body models. The verification process is costly as it requires instrumentation of a heavy vehicle, scanning of road surfaces, and collection of data by running the vehicle over different road conditions, performing various maneuvering, etc. This paper presents the reverse engineering process of a class-8 truck and validation of a full flexible-body simulation model of a Wabash 53-foot trailer against the strain data recoded from proving ground testing of an instrumented truck. Simulation results show that, with the exception of the noise from the strain gage data from instrumented test run at 30 mph, there is a good agreement in periodicity and relative amplitude with the ADAMS model. A comparison of strain data from the flex-body model and the instrumented truck shows that the modeling and verification approach presented in this paper can be confidently used to validate the full flexible-body models developed for specific analyses.展开更多
文摘Many studies have been conducted by analyzing crash data that included road profile, site conditions, vehicle configurations and weights, driver behavior, etc.. However, limited studies have been conducted evaluating the impact of these factors on crashes and/or rollover through simulations. This is mainly due to lack of availability of verified full vehicle flexible-body models. The verification process is costly as it requires instrumentation of a heavy vehicle, scanning of road surfaces, and collection of data by running the vehicle over different road conditions, performing various maneuvering, etc. This paper presents the reverse engineering process of a class-8 truck and validation of a full flexible-body simulation model of a Wabash 53-foot trailer against the strain data recoded from proving ground testing of an instrumented truck. Simulation results show that, with the exception of the noise from the strain gage data from instrumented test run at 30 mph, there is a good agreement in periodicity and relative amplitude with the ADAMS model. A comparison of strain data from the flex-body model and the instrumented truck shows that the modeling and verification approach presented in this paper can be confidently used to validate the full flexible-body models developed for specific analyses.