A novel real coded improved genetic algorithm (GA) of training feed forward neural network is proposed to realize nonlinear system forecast. The improved GA employs a generation alternation model based the minimal gen...A novel real coded improved genetic algorithm (GA) of training feed forward neural network is proposed to realize nonlinear system forecast. The improved GA employs a generation alternation model based the minimal generation gap (MGP) and blend crossover operators (BLX α). Compared with traditional GA implemented in binary number, the processing time of the improved GA is faster because coding and decoding are unnecessary. In addition, it needn t set parameters such as the probability value of crossove...展开更多
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence da...A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness.展开更多
Coastal wetlands are characterized by complex patterns both in their geomorphlc and ecological teatures. Besides field observations, it is necessary to analyze the land cover of wetlands through the color infrared (...Coastal wetlands are characterized by complex patterns both in their geomorphlc and ecological teatures. Besides field observations, it is necessary to analyze the land cover of wetlands through the color infrared (CIR) aerial photography or remote sensing image. In this paper, we designed an evolving neural network classifier using variable string genetic algorithm (VGA) for the land cover classification of CIR aerial image. With the VGA, the classifier that we designed is able to evolve automatically the appropriate number of hidden nodes for modeling the neural network topology optimally and to find a near-optimal set of connection weights globally. Then, with backpropagation algorithm (BP), it can find the best connection weights. The VGA-BP classifier, which is derived from hybrid algorithms mentioned above, is demonstrated on CIR images classification effectively. Compared with standard classifiers, such as Bayes maximum-likelihood classifier, VGA classifier and BP-MLP (multi-layer perception) classifier, it has shown that the VGA-BP classifier can have better performance on highly resolution land cover classification.展开更多
This paper presents a hybrid soft computing modeling approach for a neurofuzzy system based on rough set theory and the genetic algorithms (NFRSGA). The fundamental problem of a neurofuzzy system is that when the inpu...This paper presents a hybrid soft computing modeling approach for a neurofuzzy system based on rough set theory and the genetic algorithms (NFRSGA). The fundamental problem of a neurofuzzy system is that when the input dimension increases, the fuzzy rule base increases exponentially. This leads to a huge infrastructure network which results in slow convergence. To solve this problem, rough set theory is used to obtain the reductive rules, which are used as fuzzy rules of the fuzzy system. The number of rules decrease, and each rule does not need all the conditional attribute values. This results in a reduced, or not fully connected, neural network. The structure of the neural network is relatively small and thus the weights to be trained decrease. The genetic algorithm is used to search the optimal discretization of the continuous attributes. The NFRSGA approach has been applied in the practical application of building a soft sensor model for estimating the freezing point of the light diesel fuel in a Fluid Catalytic Cracking Unit (FCCU), and satisfying results are obtained.展开更多
Analytic Hierarchy Process (AHP) method can be used to solve the tasks of multi-criterion decision system fields, but some complicated questions processed by AHP cannot be easily solved by means of the general method....Analytic Hierarchy Process (AHP) method can be used to solve the tasks of multi-criterion decision system fields, but some complicated questions processed by AHP cannot be easily solved by means of the general method. It is because of being unsatisfied with consistency condition or judgment matrix too intricate to solve, which causes AHP invalidation. So in order to resolve this problem, AHP knowledge systems reduced with the aid of Genetic Algorithms (GA) were proposed, which directly acquired the order of AHP issue through the rule of Rough Sets Theory (RST) method, or solved the tasks reduced by RST with classical AHP method. On this condition, the compare decision system of region informatization level was solved, and the results solved were the same to those by classical AHP, which denoted that this method was more simple and reliable, besides the four rules of changing AHP system into RST Decision System.展开更多
It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neu...It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neural Network (RBFNN) has the characteristics of optimal approximation and global approximation. The mixed coding of binary system and decimal system is introduced to the structure and parameters of RBFNN, which is trained in course of the genetic optimization. Finally, a fault diagnosis system according to the frequent faults in condensation and feed water system of nuclear power plant is set up. As a result, Genetic-RBF Neural Network (GRBFNN) makes the neural network smaller in size and higher in generalization ability. The diagnosis speed and accuracy are also improved.展开更多
As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcomi...As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcoming of the conventional radial basis function neural network (RBF NN), presented a new improved genetic algorithm (GA): hybrid hierarchy genetic algorithm (HHGA). In training RBF NN, the algorithm can automatically determine the structure and parameters of RBF based on the given sample data. Compared with the traditional groundwater level prediction model based on back propagation (BP) or RBF NN, the new prediction model based on HHGA and RBF NN can greatly increase the convergence speed and precision.展开更多
Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Exper...Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Experiments were conducted with the composition of medium components obtained by genetic algorithm, and the experimental data were used to build a BP (back propagation) neural network model. The concentrations of six medium components were used as input vectors, and the nitrite oxidization rate was used as output vector of the model. The BP neural network model was used as the objective function of genetic algorithm to find the optimum medium composition for the maximum nitrite oxidization rate. The maximum nitrite oxidization rate was 0.952 g 2 NO-2-N·(g MLSS)-1·d-1 , obtained at the genetic algorithm optimized concentration of medium components (g·L-1 ): NaCl 0.58, MgSO 4 ·7H 2 O 0.14, FeSO 4 ·7H 2 O 0.141, KH 2 PO 4 0.8485, NaNO 2 2.52, and NaHCO 3 3.613. Validation experiments suggest that the experimental results are consistent with the best result predicted by the model. A scale-up experiment shows that the nitrite degraded completely after 34 h when cultured in the optimum medium, which is 10 h less than that cultured in the initial medium.展开更多
There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill l...There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill load cell mass,SAG mill solid percentage,inlet and outlet water to the SAG mill and work index are studied.A total number of185full-scale SAG mill works are utilized to develop the artificial neural network(ANN)and the hybrid of ANN and genetic algorithm(GANN)models with relations of input and output data in the full-scale.The results show that the GANN model is more efficient than the ANN model in predicting SAG mill power.The sensitivity analysis was also performed to determine the most effective input parameters on SAG mill power.The sensitivity analysis of the GANN model shows that the work index,inlet water to the SAG mill,mill load cell weight,SAG mill solid percentage,mass flowrate and feed moisture have a direct relationship with mill power,while outlet water to the SAG mill has an inverse relationship with mill power.The results show that the GANN model could be useful to evaluate a good output to changes in input operation parameters.展开更多
A novel model of land suitability evaluation is built based on computational intelligence (CI). A fuzzy neural network (FNN) is constructed by the integration of fuzzy logic and artificial neural network (ANN). The st...A novel model of land suitability evaluation is built based on computational intelligence (CI). A fuzzy neural network (FNN) is constructed by the integration of fuzzy logic and artificial neural network (ANN). The structure and process of this network is clear. Fuzzy rules (knowledge) are expressed in the model explicitly, and can be self-adjusted by learning from samples. Genetic algorithm (GA) is employed as the learning algorithm to train the network, and makes the training of the model efficient. This model is a self-learning and self-adaptive system with a rule set revised by training.展开更多
In this paper, a new approach using artificial neural network and genetic algorithm for the optimization of the thermally coupled distillation is presented. Mathematical model can be constructed with artificial neura...In this paper, a new approach using artificial neural network and genetic algorithm for the optimization of the thermally coupled distillation is presented. Mathematical model can be constructed with artificial neural network based on the simulation results with ASPEN PLUS. Modified genetic algorithm was used to optimize the model. With the proposed model and optimization arithmetic, mathematical model can be calculated, decision variables and target value can be reached automatically and quickly. A practical example is used to demonstrate the algorithm.展开更多
A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover opera...A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover operator, mutation operators and adaptive probabilities for these operators. The algorithm is tested by two generally used functions and is used in training a neural network for image recognition. Experimental results show that the algorithm is an efficient global optimization algorithm.展开更多
The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soil...The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation.展开更多
To improve the performance of fuel cells, the operating temperature of molten carbonate fuel cell (MCFC) stack should be controlled within a specified range. In this paper, with the RBF neural network’s ability of id...To improve the performance of fuel cells, the operating temperature of molten carbonate fuel cell (MCFC) stack should be controlled within a specified range. In this paper, with the RBF neural network’s ability of identifying complex nonlinear systems, a neural network identification model of MCFC stack is developed based on the sampled input-output data. Also, a novel online fuzzy control procedure for the temperature of MCFC stack is developed based on the fuzzy genetic algorithm (FGA). Parameters and rules of the fuzzy controller are optimized. With the neural network identification model, simulation of MCFC stack control is carried out. Validity of the model and the superior performance of the fuzzy controller are demonstrated.展开更多
Excessive ground vibrations, due to blasting, can cause severe damages to the nearby area. Hence, the blast-induced ground vibration prediction is an essential tool for both evaluating and controlling the adverse cons...Excessive ground vibrations, due to blasting, can cause severe damages to the nearby area. Hence, the blast-induced ground vibration prediction is an essential tool for both evaluating and controlling the adverse consequences of blasting. Since there are several effective variables on ground vibrations that have highly nonlinear interactions, no comprehensive model of the blast-induced vibrations are available. In this study, the genetic expression programming technique was employed for prediction of the frequency of the adjacent ground vibrations. Nine input variables were used for prediction of the vibration frequencies at different distances from the blasting face. A high coefficient of determination with low mean absolute percentage error(MAPE) was achieved that demonstrated the suitability of the algorithm in this case. The proposed model outperformed an artificial neural network model that was proposed by other authors for the same dataset.展开更多
The solid oxide fuel cell (SOFC) is a nonlinear system that is hard to model by conventional methods. So far,most existing models are based on conversion laws,which are too complicated to be applied to design a contro...The solid oxide fuel cell (SOFC) is a nonlinear system that is hard to model by conventional methods. So far,most existing models are based on conversion laws,which are too complicated to be applied to design a control system. To facilitate a valid control strategy design,this paper tries to avoid the internal complexities and presents a modelling study of SOFC per-formance by using a radial basis function (RBF) neural network based on a genetic algorithm (GA). During the process of mod-elling,the GA aims to optimize the parameters of RBF neural networks and the optimum values are regarded as the initial values of the RBF neural network parameters. The validity and accuracy of modelling are tested by simulations,whose results reveal that it is feasible to establish the model of SOFC stack by using RBF neural networks identification based on the GA. Furthermore,it is possible to design an online controller of a SOFC stack based on this GA-RBF neural network identification model.展开更多
In this research,crashworthiness of polyurethane foam-filled tapered decagonal structures with different ratios of a/b=0,0.25,0.5,0.75 and 1 was evaluated under axial and oblique impacts.These new designed structures ...In this research,crashworthiness of polyurethane foam-filled tapered decagonal structures with different ratios of a/b=0,0.25,0.5,0.75 and 1 was evaluated under axial and oblique impacts.These new designed structures contained inner and outer tapered tubes,and four stiffening plates connected them together.The parameter a/b corresponds to the inner tube side length to the outer tube one.In addition,the space between the inner and outer tubes was filled with polyurethane foam.After validating the finite element model generated in LS-DYNA using the results of experimental tests,crashworthiness indicators of SEA(specific energy absorption)and Fmax(peak crushing force)were obtained for the studied structures.Based on the TOPSIS calculations,the semi-foam filled decagonal structure with the ratio of a/b=0.5 demonstrated the best crashworthiness capability among the studied ratios of a/b.Finally,optimum thicknesses(t1(thickness of the outer tube),t2(thickness of the inner tube),t3(thickness of the stiffening plates))of the selected decagonal structure were obtained by adopting RBF(radial basis function)neural network and genetic algorithm.展开更多
文摘A novel real coded improved genetic algorithm (GA) of training feed forward neural network is proposed to realize nonlinear system forecast. The improved GA employs a generation alternation model based the minimal generation gap (MGP) and blend crossover operators (BLX α). Compared with traditional GA implemented in binary number, the processing time of the improved GA is faster because coding and decoding are unnecessary. In addition, it needn t set parameters such as the probability value of crossove...
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.
文摘A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness.
文摘Coastal wetlands are characterized by complex patterns both in their geomorphlc and ecological teatures. Besides field observations, it is necessary to analyze the land cover of wetlands through the color infrared (CIR) aerial photography or remote sensing image. In this paper, we designed an evolving neural network classifier using variable string genetic algorithm (VGA) for the land cover classification of CIR aerial image. With the VGA, the classifier that we designed is able to evolve automatically the appropriate number of hidden nodes for modeling the neural network topology optimally and to find a near-optimal set of connection weights globally. Then, with backpropagation algorithm (BP), it can find the best connection weights. The VGA-BP classifier, which is derived from hybrid algorithms mentioned above, is demonstrated on CIR images classification effectively. Compared with standard classifiers, such as Bayes maximum-likelihood classifier, VGA classifier and BP-MLP (multi-layer perception) classifier, it has shown that the VGA-BP classifier can have better performance on highly resolution land cover classification.
基金Sponsored by the National High Technology Research and Development Program of China (Grant No.G2001 AA413130).
文摘This paper presents a hybrid soft computing modeling approach for a neurofuzzy system based on rough set theory and the genetic algorithms (NFRSGA). The fundamental problem of a neurofuzzy system is that when the input dimension increases, the fuzzy rule base increases exponentially. This leads to a huge infrastructure network which results in slow convergence. To solve this problem, rough set theory is used to obtain the reductive rules, which are used as fuzzy rules of the fuzzy system. The number of rules decrease, and each rule does not need all the conditional attribute values. This results in a reduced, or not fully connected, neural network. The structure of the neural network is relatively small and thus the weights to be trained decrease. The genetic algorithm is used to search the optimal discretization of the continuous attributes. The NFRSGA approach has been applied in the practical application of building a soft sensor model for estimating the freezing point of the light diesel fuel in a Fluid Catalytic Cracking Unit (FCCU), and satisfying results are obtained.
基金Sponsored by the National Natural Science Foundation of China(Grant No70472075)the Project of the Jiangxi Province Natural Science Foundation(Grant No2007GZS0898)the Project of Science and Technology for the Department of Education of Jiangxi Province (Grant No2007-183)
文摘Analytic Hierarchy Process (AHP) method can be used to solve the tasks of multi-criterion decision system fields, but some complicated questions processed by AHP cannot be easily solved by means of the general method. It is because of being unsatisfied with consistency condition or judgment matrix too intricate to solve, which causes AHP invalidation. So in order to resolve this problem, AHP knowledge systems reduced with the aid of Genetic Algorithms (GA) were proposed, which directly acquired the order of AHP issue through the rule of Rough Sets Theory (RST) method, or solved the tasks reduced by RST with classical AHP method. On this condition, the compare decision system of region informatization level was solved, and the results solved were the same to those by classical AHP, which denoted that this method was more simple and reliable, besides the four rules of changing AHP system into RST Decision System.
文摘It is necessary to develop an automatic fault diagnosis system to avoid a possible nuclear disaster caused by an inaccurate fault diagnosis in the nuclear power plant by the operator. Because Radial Basis Function Neural Network (RBFNN) has the characteristics of optimal approximation and global approximation. The mixed coding of binary system and decimal system is introduced to the structure and parameters of RBFNN, which is trained in course of the genetic optimization. Finally, a fault diagnosis system according to the frequent faults in condensation and feed water system of nuclear power plant is set up. As a result, Genetic-RBF Neural Network (GRBFNN) makes the neural network smaller in size and higher in generalization ability. The diagnosis speed and accuracy are also improved.
文摘As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcoming of the conventional radial basis function neural network (RBF NN), presented a new improved genetic algorithm (GA): hybrid hierarchy genetic algorithm (HHGA). In training RBF NN, the algorithm can automatically determine the structure and parameters of RBF based on the given sample data. Compared with the traditional groundwater level prediction model based on back propagation (BP) or RBF NN, the new prediction model based on HHGA and RBF NN can greatly increase the convergence speed and precision.
基金Supported by the National Natural Science Foundation of China (21076090)
文摘Two artificial intelligence techniques, artificial neural network and genetic algorithm, were applied to optimize the fermentation medium for improving the nitrite oxidization rate of nitrite oxidizing bacteria. Experiments were conducted with the composition of medium components obtained by genetic algorithm, and the experimental data were used to build a BP (back propagation) neural network model. The concentrations of six medium components were used as input vectors, and the nitrite oxidization rate was used as output vector of the model. The BP neural network model was used as the objective function of genetic algorithm to find the optimum medium composition for the maximum nitrite oxidization rate. The maximum nitrite oxidization rate was 0.952 g 2 NO-2-N·(g MLSS)-1·d-1 , obtained at the genetic algorithm optimized concentration of medium components (g·L-1 ): NaCl 0.58, MgSO 4 ·7H 2 O 0.14, FeSO 4 ·7H 2 O 0.141, KH 2 PO 4 0.8485, NaNO 2 2.52, and NaHCO 3 3.613. Validation experiments suggest that the experimental results are consistent with the best result predicted by the model. A scale-up experiment shows that the nitrite degraded completely after 34 h when cultured in the optimum medium, which is 10 h less than that cultured in the initial medium.
文摘There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill load cell mass,SAG mill solid percentage,inlet and outlet water to the SAG mill and work index are studied.A total number of185full-scale SAG mill works are utilized to develop the artificial neural network(ANN)and the hybrid of ANN and genetic algorithm(GANN)models with relations of input and output data in the full-scale.The results show that the GANN model is more efficient than the ANN model in predicting SAG mill power.The sensitivity analysis was also performed to determine the most effective input parameters on SAG mill power.The sensitivity analysis of the GANN model shows that the work index,inlet water to the SAG mill,mill load cell weight,SAG mill solid percentage,mass flowrate and feed moisture have a direct relationship with mill power,while outlet water to the SAG mill has an inverse relationship with mill power.The results show that the GANN model could be useful to evaluate a good output to changes in input operation parameters.
基金Funded by the Open Research Fund Program of GIS Laboratory of Wuhan University (No. wd200609).
文摘A novel model of land suitability evaluation is built based on computational intelligence (CI). A fuzzy neural network (FNN) is constructed by the integration of fuzzy logic and artificial neural network (ANN). The structure and process of this network is clear. Fuzzy rules (knowledge) are expressed in the model explicitly, and can be self-adjusted by learning from samples. Genetic algorithm (GA) is employed as the learning algorithm to train the network, and makes the training of the model efficient. This model is a self-learning and self-adaptive system with a rule set revised by training.
文摘In this paper, a new approach using artificial neural network and genetic algorithm for the optimization of the thermally coupled distillation is presented. Mathematical model can be constructed with artificial neural network based on the simulation results with ASPEN PLUS. Modified genetic algorithm was used to optimize the model. With the proposed model and optimization arithmetic, mathematical model can be calculated, decision variables and target value can be reached automatically and quickly. A practical example is used to demonstrate the algorithm.
文摘A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover operator, mutation operators and adaptive probabilities for these operators. The algorithm is tested by two generally used functions and is used in training a neural network for image recognition. Experimental results show that the algorithm is an efficient global optimization algorithm.
基金Project(51878078)supported by the National Natural Science Foundation of ChinaProject(2018-025)supported by the Training Program for High-level Technical Personnel in Transportation Industry,ChinaProject(CTKY-PTRC-2018-003)supported by the Design Theory,Method and Demonstration of Durability Asphalt Pavement Based on Heavy-duty Traffic Conditions in Shanghai Area,China。
文摘The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation.
文摘To improve the performance of fuel cells, the operating temperature of molten carbonate fuel cell (MCFC) stack should be controlled within a specified range. In this paper, with the RBF neural network’s ability of identifying complex nonlinear systems, a neural network identification model of MCFC stack is developed based on the sampled input-output data. Also, a novel online fuzzy control procedure for the temperature of MCFC stack is developed based on the fuzzy genetic algorithm (FGA). Parameters and rules of the fuzzy controller are optimized. With the neural network identification model, simulation of MCFC stack control is carried out. Validity of the model and the superior performance of the fuzzy controller are demonstrated.
文摘Excessive ground vibrations, due to blasting, can cause severe damages to the nearby area. Hence, the blast-induced ground vibration prediction is an essential tool for both evaluating and controlling the adverse consequences of blasting. Since there are several effective variables on ground vibrations that have highly nonlinear interactions, no comprehensive model of the blast-induced vibrations are available. In this study, the genetic expression programming technique was employed for prediction of the frequency of the adjacent ground vibrations. Nine input variables were used for prediction of the vibration frequencies at different distances from the blasting face. A high coefficient of determination with low mean absolute percentage error(MAPE) was achieved that demonstrated the suitability of the algorithm in this case. The proposed model outperformed an artificial neural network model that was proposed by other authors for the same dataset.
文摘The solid oxide fuel cell (SOFC) is a nonlinear system that is hard to model by conventional methods. So far,most existing models are based on conversion laws,which are too complicated to be applied to design a control system. To facilitate a valid control strategy design,this paper tries to avoid the internal complexities and presents a modelling study of SOFC per-formance by using a radial basis function (RBF) neural network based on a genetic algorithm (GA). During the process of mod-elling,the GA aims to optimize the parameters of RBF neural networks and the optimum values are regarded as the initial values of the RBF neural network parameters. The validity and accuracy of modelling are tested by simulations,whose results reveal that it is feasible to establish the model of SOFC stack by using RBF neural networks identification based on the GA. Furthermore,it is possible to design an online controller of a SOFC stack based on this GA-RBF neural network identification model.
基金Project(1365-96/7/22) supported by University of Mohaghegh Ardabili,Iran
文摘In this research,crashworthiness of polyurethane foam-filled tapered decagonal structures with different ratios of a/b=0,0.25,0.5,0.75 and 1 was evaluated under axial and oblique impacts.These new designed structures contained inner and outer tapered tubes,and four stiffening plates connected them together.The parameter a/b corresponds to the inner tube side length to the outer tube one.In addition,the space between the inner and outer tubes was filled with polyurethane foam.After validating the finite element model generated in LS-DYNA using the results of experimental tests,crashworthiness indicators of SEA(specific energy absorption)and Fmax(peak crushing force)were obtained for the studied structures.Based on the TOPSIS calculations,the semi-foam filled decagonal structure with the ratio of a/b=0.5 demonstrated the best crashworthiness capability among the studied ratios of a/b.Finally,optimum thicknesses(t1(thickness of the outer tube),t2(thickness of the inner tube),t3(thickness of the stiffening plates))of the selected decagonal structure were obtained by adopting RBF(radial basis function)neural network and genetic algorithm.