期刊文献+
共找到4,886篇文章
< 1 2 245 >
每页显示 20 50 100
基于遗传优化BP神经网络的发动机曲轴扭转减振器优化 被引量:4
1
作者 邬全法 张贵豪 +1 位作者 王普 范让林 《现代制造工程》 CSCD 北大核心 2019年第12期24-31,共8页
发动机曲轴轴系的扭转振动会影响发动机的性能以及整车舒适度,对曲轴扭转减振器进行优化可有效降低曲轴扭转振动。首先,针对直列四缸汽油发动机曲轴轴系建立多自由度集总参数模型,求出不同谐次激振力矩响应的叠加结果;然后,以优化曲轴... 发动机曲轴轴系的扭转振动会影响发动机的性能以及整车舒适度,对曲轴扭转减振器进行优化可有效降低曲轴扭转振动。首先,针对直列四缸汽油发动机曲轴轴系建立多自由度集总参数模型,求出不同谐次激振力矩响应的叠加结果;然后,以优化曲轴轴系扭振幅值为目标,建立曲轴扭转减振器优化设计的数学模型,应用遗传优化BP神经网络算法对扭转减振器进行优化;最后,在此基础上,将应用遗传优化BP神经网络算法和仅应用BP神经网络算法的优化结果进行对比,结果表明遗传优化BP神经网络模型的预测精度更高。将优化后的扭转减振器参数代入多自由度集总参数模型进行计算,得到与遗传优化BP神经网络算法预测值非常接近的曲轴轴系扭振幅值,进一步验证了遗传优化BP神经网络优化结果的准确性。 展开更多
关键词 汽车 发动机 曲轴 扭转减振器 谐量分析 遗传优化bp神经网络 优化设计
下载PDF
基于主成分分析和遗传优化BP神经网络的光伏输出功率短期预测 被引量:42
2
作者 许童羽 马艺铭 +2 位作者 曹英丽 唐瑞 陈俊杰 《电力系统保护与控制》 EI CSCD 北大核心 2016年第22期90-95,共6页
针对光伏系统输出功率的波动性和间歇性特点,提出一种基于主成分分析(PCA)和遗传算法(GA)优化的BP神经网络功率短期预测方法。通过历史功率数据和实时气象因素对输出功率进行直接预测,利用主成分分析法将多个原始变量降维成少数彼此独... 针对光伏系统输出功率的波动性和间歇性特点,提出一种基于主成分分析(PCA)和遗传算法(GA)优化的BP神经网络功率短期预测方法。通过历史功率数据和实时气象因素对输出功率进行直接预测,利用主成分分析法将多个原始变量降维成少数彼此独立的变量,作为神经网络的输入。同时利用遗传算法的全局搜索特性在解空间中定位一个较好的空间,优化BP的初始权值阈值,克服了传统BP神经网络易陷入局部极小点、学习收敛速度慢的问题。通过建立不同预测模型进行对比,验证了所提算法和模型的有效性。 展开更多
关键词 主成分分析 遗传算法 功率预测 bp神经网络 光伏系统
下载PDF
基于遗传优化BP神经网络的供热管网故障诊断模型 被引量:5
3
作者 段兰兰 田琦 +1 位作者 段鹏飞 李哲 《中北大学学报(自然科学版)》 CAS 北大核心 2014年第3期303-308,共6页
为了克服传统BP神经网络收敛速度慢,易陷入局部极值的缺陷,提出一种遗传优化的BP神经网络供热管网故障诊断模型.通过建立泄漏工况数学模型,获取了泄漏工况下的节点压力变化情况,并以此作为BP神经网络的样本数据;利用遗传算法对BP网络初... 为了克服传统BP神经网络收敛速度慢,易陷入局部极值的缺陷,提出一种遗传优化的BP神经网络供热管网故障诊断模型.通过建立泄漏工况数学模型,获取了泄漏工况下的节点压力变化情况,并以此作为BP神经网络的样本数据;利用遗传算法对BP网络初始权值和阀值进行了优化,再通过BP神经网络进行了供热管网的故障诊断,以确定泄漏管段和泄漏量,并对泄漏点进行定位.实验结果表明:该模型性能明显优于传统的BP神经网络故障诊断模型,且诊断精度高. 展开更多
关键词 供热管网 遗传算法 bp神经网络 故障诊断
下载PDF
基于遗传优化BP神经网络的员工绩效评估实证研究 被引量:1
4
作者 田丽 段争光 +2 位作者 王勇 高来鑫 周明龙 《贵州师范大学学报(自然科学版)》 CAS 2012年第5期89-93,共5页
首先介绍了基于BP神经网络的单位员工绩效评估模型,再通过遗传算法对BP神经网络的参数进行优化,提高了BP神经网络算法进行绩效评估的精度和效率。最后通过实证分析证明了此算法在单位员工绩效评估中的可行性和有效性。
关键词 bp神经网络 遗传算法 绩效评估
下载PDF
遗传优化BP神经网络在槽况预测中的应用 被引量:2
5
作者 朱斌泉 林景栋 《佳木斯大学学报(自然科学版)》 CAS 2010年第3期329-332,共4页
针对目前国内对铝电解槽槽况诊断存在的的难度大、效率低等问题,设计了一种以槽电压信号为特征向量的诊断样本和BP神经网络模型.利用BP神经网络的自学习能力,对铝电解槽的槽况进行分析预测.同时本文利用遗传算法的最优搜索能力对BP神经... 针对目前国内对铝电解槽槽况诊断存在的的难度大、效率低等问题,设计了一种以槽电压信号为特征向量的诊断样本和BP神经网络模型.利用BP神经网络的自学习能力,对铝电解槽的槽况进行分析预测.同时本文利用遗传算法的最优搜索能力对BP神经网络的初始权值和阈值进行优化.通过MATLAB对状态预测算法进行编程.结果显示,对铝电解槽槽况的判断基本正确. 展开更多
关键词 bp神经网络 遗传算法 槽况预测
下载PDF
基于遗传优化BP神经网络的尾矿库边坡稳定性预测 被引量:5
6
作者 王蒙 王斌 王飞 《赤峰学院学报(自然科学版)》 2019年第11期113-115,共3页
针对BP神经网络具有收敛速度慢以及极值容易陷入局部最小的劣势,提出使用遗传算法对BP神经网络进行改进,优化BP神经网络的权值和阈值,并将改进的算法应用于尾矿库边坡稳定性预测中.算例仿真结果表明,所提算法对尾矿库边坡稳定性预测具... 针对BP神经网络具有收敛速度慢以及极值容易陷入局部最小的劣势,提出使用遗传算法对BP神经网络进行改进,优化BP神经网络的权值和阈值,并将改进的算法应用于尾矿库边坡稳定性预测中.算例仿真结果表明,所提算法对尾矿库边坡稳定性预测具有较高的精确度. 展开更多
关键词 遗传算法 bp神经网络 尾矿库边坡
下载PDF
基于遗传优化BP神经网络的GPS高程异常拟合模型研究 被引量:1
7
作者 徐南 吴彦 孟春晨 《水利与建筑工程学报》 2013年第2期115-117,共3页
为解决标准BP神经网络模型存在的易陷入极小值、训练时间长、网络不稳定等问题,采用基于实数编码的遗传算法,优化网络初始权值和阈值,构建GPS高程异常拟合模型。通过实测数据进行计算分析,并将该模型的结果与平面拟合、二次曲面拟合及标... 为解决标准BP神经网络模型存在的易陷入极小值、训练时间长、网络不稳定等问题,采用基于实数编码的遗传算法,优化网络初始权值和阈值,构建GPS高程异常拟合模型。通过实测数据进行计算分析,并将该模型的结果与平面拟合、二次曲面拟合及标准BP神经网络模型所得结果比较,得出如下结论:使用遗传优化BP神经网络进行高程异常拟合,模型误差和中误差均较小,故基于遗传优化BP神经网络模型具有较高的精度和较好的稳定性,可以应用于GPS高程异常拟合问题。 展开更多
关键词 高程异常 拟合 bp神经网络 遗传算法
下载PDF
遗传优化BP神经网络在岩石节理图像分割中的应用 被引量:2
8
作者 陈立万 《微计算机信息》 2010年第23期211-213,共3页
采用图像分割的方法对岩石节理图像进行处理,有助于准确获取岩石节理的力学行为和表面形态,对于消除水库区安全隐患有重要的意义。本文针对三峡库区的岩石表面裂隙节理特点,采用遗传算法优化BP神经网络对岩石节理裂隙图像进行分割处理,... 采用图像分割的方法对岩石节理图像进行处理,有助于准确获取岩石节理的力学行为和表面形态,对于消除水库区安全隐患有重要的意义。本文针对三峡库区的岩石表面裂隙节理特点,采用遗传算法优化BP神经网络对岩石节理裂隙图像进行分割处理,采用了自适应的遗传参数。实验表明,该分割算法能够大幅度提高分割效率,具有自适应性好、精确高、速度快等优点。 展开更多
关键词 bp神经网络 遗传算法 图像分割 岩石节理裂隙
下载PDF
改进的基于遗传优化BP神经网络的电网故障诊断 被引量:57
9
作者 袁圃 毛剑琳 +2 位作者 向凤红 刘恋 张茂兴 《电力系统及其自动化学报》 CSCD 北大核心 2017年第1期118-122,共5页
BP神经网络具有良好的自学习、自适应和泛化能力,但运算过程中容易陷入局部极小值,同时隐含层节点数的选择也影响着诊断的效果。文中根据经验公式缩小隐含层节点数范围,在小范围里寻找最优的隐含层节点数。根据遗传算法具有全局寻优的特... BP神经网络具有良好的自学习、自适应和泛化能力,但运算过程中容易陷入局部极小值,同时隐含层节点数的选择也影响着诊断的效果。文中根据经验公式缩小隐含层节点数范围,在小范围里寻找最优的隐含层节点数。根据遗传算法具有全局寻优的特点,用遗传算法优化BP神经网络训练的初始权值阈值,可以避免BP神经网络陷入局部极小值的问题。结合两种方法对电网进行故障诊断,实例分析表明该方法可以准确有效地诊断出电网故障位置,提高电网故障诊断的容错性。 展开更多
关键词 bp神经网络 电网故障诊断 隐含层 遗传算法 容错性
下载PDF
基于遗传优化BP神经网络的水稻气象产量预报模型 被引量:18
10
作者 罗梦森 景元书 熊世为 《气象科学》 CSCD 北大核心 2012年第6期665-670,共6页
利用1951—2010年江苏省水稻产量及同期14个气象站点的逐日平均气温、降水资料,采用因子膨化及相关分析,研究了水稻气象产量的影响因子及影响时段。在此基础上建立了逐步回归、PCA-BP神经网络以及PCA-GA-BP神经网络3种产量预报模型。结... 利用1951—2010年江苏省水稻产量及同期14个气象站点的逐日平均气温、降水资料,采用因子膨化及相关分析,研究了水稻气象产量的影响因子及影响时段。在此基础上建立了逐步回归、PCA-BP神经网络以及PCA-GA-BP神经网络3种产量预报模型。结果表明:(1)7—9月份是水稻产量形成的关键时期,对气温、降水的变化最为敏感,气温对气象产量的影响大于降水;(2)两种神经网络模型预报效果好于回归模型;(3)遗传优化的神经网络模型比未优化模型的训练速度提高了70%左右,预报精度也提高了4.3%。 展开更多
关键词 水稻 气象产量 遗传优化 bp神经网络
下载PDF
基于遗传优化BP神经网络算法的光伏系统最大功率点跟踪研究 被引量:27
11
作者 林虹江 周步祥 +2 位作者 冉伊 詹长杰 杨昶宇 《电测与仪表》 北大核心 2015年第5期35-40,共6页
针对恒压控制法中采用BP神经网络预测最大功率点处电压存在较大误差的情况,提出了用遗传算法来优化BP神经网络,然后用优化后的算法来预测光伏系统最大功率点之处的电压,并以此值代替基于恒电压的光伏发电系统MPPT控制算法中的恒电压参数... 针对恒压控制法中采用BP神经网络预测最大功率点处电压存在较大误差的情况,提出了用遗传算法来优化BP神经网络,然后用优化后的算法来预测光伏系统最大功率点之处的电压,并以此值代替基于恒电压的光伏发电系统MPPT控制算法中的恒电压参数;同时结合恒电压控制法建立了基于GA-BP神经网络学习算法的改进恒压型光伏系统MPPT控制的仿真模型。最后算例仿真结果证明所提的基于GA-BPNN的光伏系统MPPT控制算法能够快速准确地进行光伏最大功率点跟踪,并且相比于BP神经网络算法、干扰观察法及FUZZY控制算法其稳定性更好、精度更高。 展开更多
关键词 恒压控制法 最大功率点跟踪 遗传算法 bp神经网络 干扰观察法
下载PDF
基于遗传优化BP神经网络的信噪比预测研究 被引量:1
12
作者 翟龙飞 陈迎春 +1 位作者 杨冲 贾波 《中国新通信》 2016年第7期77-77,共1页
BP神经网络良好的非线性拟合能力和精确的数据归纳能力,使其广泛应用于各个领域。但在训练过程中也暴露出网络结构不易确定和易陷于局部最小等不足。本文基于短波信号接收信噪比预测数据,利用遗传算法分别从BP网络结构和网络参数两个方... BP神经网络良好的非线性拟合能力和精确的数据归纳能力,使其广泛应用于各个领域。但在训练过程中也暴露出网络结构不易确定和易陷于局部最小等不足。本文基于短波信号接收信噪比预测数据,利用遗传算法分别从BP网络结构和网络参数两个方面进行算法改进,最后通过仿真测试,比较出BP网络和GA+BP网络的优缺点。 展开更多
关键词 遗传算法 bp神经网络 信噪比预测
下载PDF
基于主成分分析与遗传优化BP神经网络的风电场短期功率预测研究 被引量:4
13
作者 张泽龙 钱勇 刘华兵 《宁夏电力》 2019年第6期1-6,34,共7页
为降低风电场弃风率及对电网稳定性影响,对风电场短期功率进行准确预测显得十分重要。针对传统BP神经网络泛化能力差、网络收敛速度慢等问题,建立了一种基于主成分分析与遗传优化BP神经网络相结合的风电场短期功率预测模型。首先,利用... 为降低风电场弃风率及对电网稳定性影响,对风电场短期功率进行准确预测显得十分重要。针对传统BP神经网络泛化能力差、网络收敛速度慢等问题,建立了一种基于主成分分析与遗传优化BP神经网络相结合的风电场短期功率预测模型。首先,利用主成分分析法对风电场原始气象数据进行分析,将得到的独立变量作为BP神经网络的输入;然后利用遗传算法确定了神经网络的最优初始权值和阈值的大致范围,并用L-M算法对BP网络权值和阈值进行细化训练;最后,利用中国北方某风电场实际运行数据进行验证,结果表明,所建立的预测模型合理有效,不仅可以加快BP神经网络收敛速度,减少预测误差,还可以提高风电场短期输出功率的预测精度,具有一定的工程应用价值。 展开更多
关键词 主成分分析 遗传算法 bp神经网络 风电场功率 短期预测
下载PDF
遗传优化BP神经网络在电液力伺服系统辨识中的应用
14
作者 周挺 王虎 《机械工程师》 2020年第12期60-63,66,共5页
介绍电液力伺服系统的结构及原理,针对系统建模中参数时变和非线性问题,采用BP神经网络进行系统辨识建模;利用遗传算法优化BP神经网络,克服单纯BP算法容易局部收敛、训练速度慢的问题;借助MATLAB神经网络工具箱、全局优化工具箱编写系... 介绍电液力伺服系统的结构及原理,针对系统建模中参数时变和非线性问题,采用BP神经网络进行系统辨识建模;利用遗传算法优化BP神经网络,克服单纯BP算法容易局部收敛、训练速度慢的问题;借助MATLAB神经网络工具箱、全局优化工具箱编写系统辨识算法,建立系统的神经网络辨识模型。分析神经网络模型辨识结果,将其与ARMAX线性参数模型的辨识结果作对比,验证遗传优化BP神经网络系统辨识建模的高效性和适用性。 展开更多
关键词 电液力伺服系统 bp神经网络 遗传算法 系统辨识建模
下载PDF
小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别
15
作者 韩东颖 田伟 +1 位作者 黄岩 朱国庆 《机械科学与技术》 CSCD 北大核心 2024年第1期39-44,共6页
井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构... 井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构损伤的信息;再通过特征参数建立数据集训练并测试井架钢结构损伤识别模型,该模型结合遗传算法自身特点改善了传统BP神经网络的不足。本文识别方法不需要损伤前的数据特征进行对比,便可对损伤位置进行确定。经过对石油井架钢结构模型实验验证:该方法对井架钢结构损伤识别准确率超过90%,相对于BP网络识别准确率以及识别速度均有所提高。 展开更多
关键词 井架钢结构 损伤 小波包 遗传算法 优化bp神经网络
下载PDF
遗传算法优化BP神经网络在水质评价中的应用 被引量:1
16
作者 宋洁 冯青 《甘肃科技》 2024年第1期33-41,共9页
通过对常规BP神经网络和遗传算法深入研究后,提出将二者结合起来,取长补短,并采用黄金分割算法确定神经网络模型隐含层节点数,借助MATLAB软件建立了遗传算法优化后的BP神经网络水质评价模型,解决了初始权值、阈值确定难,易陷入局部极值... 通过对常规BP神经网络和遗传算法深入研究后,提出将二者结合起来,取长补短,并采用黄金分割算法确定神经网络模型隐含层节点数,借助MATLAB软件建立了遗传算法优化后的BP神经网络水质评价模型,解决了初始权值、阈值确定难,易陷入局部极值以及网络收敛慢等问题,同时结合2021年黄河上游部分断面地表水环境质量评价进行了实例仿真实验,验证了该模型的可行性和准确性。遗传算法优化后的BP神经网络不仅能从全局考虑污染因子对评价结果的影响,而且解决了常规BP神经网络易陷入局部极值的问题,提高了网络的识别精度,评价结果更准确,更符合实际水体情况,在一定程度上改善了传统评价方法的片面性和主观性,对现有的水环境质量评价方法的改进起到了积极作用。 展开更多
关键词 bp神经网络 遗传算法 黄金分割算法 水环境质量评价 MATLAB
下载PDF
基于遗传算法优化BP神经网络的生石膏超细磨预测效果研究
17
作者 张帅 王宇斌 +2 位作者 桂婉婷 田晓珍 华开强 《化工矿物与加工》 CAS 2024年第6期9-15,共7页
为提高BP神经网络对生石膏超细磨效果的预测准确性,采用Pearson相关系数对超细石膏粉体正交试验产品细度与影响因素的显著性进行分析,并利用遗传算法优化BP神经网络对超细石膏粉体试验产品的d_(50)和d_(90)进行预测,结果表明:超细石膏... 为提高BP神经网络对生石膏超细磨效果的预测准确性,采用Pearson相关系数对超细石膏粉体正交试验产品细度与影响因素的显著性进行分析,并利用遗传算法优化BP神经网络对超细石膏粉体试验产品的d_(50)和d_(90)进行预测,结果表明:超细石膏粉体制备过程中影响细度因素的显著性由大到小依次为排矿口宽度、矿浆质量分数和超细磨时间。利用排矿口宽度和矿浆质量分数两个主要影响因素,利用遗传算法对BP神经网络进行优化,与未优化的BP神经网络相比,经遗传算法优化的BP神经网络具有更高的精度,预测误差也更小,其d_(50)平均绝对误差为0.7575,均方误差为0.7977,均方误差根为0.8931,平均绝对百分比误差为4.4838%;d_(90)平均绝对误差为0.7870,均方误差为0.8294,均方误差根为0.9107,平均绝对百分比误差为1.6658%。研究成果可为超细粉体的制备提供参考。 展开更多
关键词 遗传算法 bp神经网络 生石膏 超细磨 显著性 相关系数 预测精度
下载PDF
基于BP人工神经网络与遗传算法的航速优化
18
作者 陈映彬 文逸彦 +2 位作者 董国祥 屠海洋 张焱飞 《舰船科学技术》 北大核心 2024年第1期82-87,共6页
为了进一步提高船舶能耗效率,本文提出一种基于BP人工神经网络与遗传算法的航速优化技术路线。首先,介绍常见油耗模型的构建方法;其次,利用BP人工神经网络建立目标船舶的油耗模型。模型预测的平均绝对误差为2.3%,准确度和泛化能力基本... 为了进一步提高船舶能耗效率,本文提出一种基于BP人工神经网络与遗传算法的航速优化技术路线。首先,介绍常见油耗模型的构建方法;其次,利用BP人工神经网络建立目标船舶的油耗模型。模型预测的平均绝对误差为2.3%,准确度和泛化能力基本满足工程应用要求。最后,利用遗传算法,并基于历史气象数据对目标船舶的航线做分段航速优化。计算结果表明,航速优化后目标船舶的航行时长不仅能减少1.35天,燃油损耗还可节省10.1%,由此说明对航行船舶做分段航速优化是一种可行方案。 展开更多
关键词 bp神经网络 遗传算法 油耗模型 航速优化
下载PDF
基于改进实数编码遗传算法的神经网络超参数优化 被引量:2
19
作者 佘维 李阳 +2 位作者 钟李红 孔德锋 田钊 《计算机应用》 CSCD 北大核心 2024年第3期671-676,共6页
针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使... 针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。 展开更多
关键词 实数编码 遗传算法 超参数优化 进化神经网络 机器学习
下载PDF
正交实验结合AHP和GA-BP神经网络优化益黄散醇提工艺 被引量:1
20
作者 王巍 杨武杰 +4 位作者 韩宇 安悦言 郝季 张强 鞠成国 《中国药房》 CAS 北大核心 2024年第3期327-332,共6页
目的 优化益黄散的醇提工艺。方法 采用回流提取法,以乙醇体积分数、液料比、提取时间为考察因素设计正交实验,以橙皮苷、川陈皮素、橘皮素、没食子酸、诃黎勒酸、诃子酸、甘草苷、甘草酸、丁香酚含量和干浸膏得率为指标,采用层次分析法... 目的 优化益黄散的醇提工艺。方法 采用回流提取法,以乙醇体积分数、液料比、提取时间为考察因素设计正交实验,以橙皮苷、川陈皮素、橘皮素、没食子酸、诃黎勒酸、诃子酸、甘草苷、甘草酸、丁香酚含量和干浸膏得率为指标,采用层次分析法(AHP)进行赋权并计算综合评分。通过验证正交实验和遗传算法(GA)-反向传播神经网络(BP神经网络)所预测的结果确定益黄散最佳醇提工艺参数。结果 正交实验优选的最佳醇提工艺参数为乙醇体积分数60%、液料比14∶1(mL/g)、提取时间90 min、提取2次,验证所得综合评分为79.19分;GA-BP神经网络优选的最佳醇提工艺参数为乙醇体积分数65%、液料比14∶1(mL/g)、提取时间60 min、提取2次,验证所得综合评分为85.30分,高于正交实验所得结果。结论 采用正交实验结合GA-BP神经网络的寻优方法较传统的正交实验寻优方法效果更佳,其优选出的益黄散最佳醇提工艺稳定可靠。 展开更多
关键词 益黄散 醇提工艺 正交实验 遗传算法 bp神经网络 层次分析法
下载PDF
上一页 1 2 245 下一页 到第
使用帮助 返回顶部