The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soil...The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation.展开更多
Precise comprehensive evaluation of flood disaster loss is significant for the prevention and mitigation of flood disasters. Here, one of the difficulties involved is how to establish a model capable of describing the...Precise comprehensive evaluation of flood disaster loss is significant for the prevention and mitigation of flood disasters. Here, one of the difficulties involved is how to establish a model capable of describing the complex relation between the input and output data of the system of flood disaster loss. Genetic programming (GP) solves problems by using ideas from genetic algorithm and generates computer programs automatically. In this study a new method named the evaluation of the grade of flood disaster loss (EGFD) on the basis of improved genetic programming (IGP) is presented (IGP-EGFD). The flood disaster area and the direct economic loss are taken as the evaluation indexes of flood disaster loss. Obviously that the larger the evaluation index value, the larger the corresponding value of the grade of flood disaster loss is. Consequently the IGP code is designed to make the value of the grade of flood disaster be an increasing function of the index value. The result of the application of the IGP-EGFD model to Henan Province shows that a good function expression can be obtained within a bigger searched function space; and the model is of high precision and considerable practical significance. Thus, IGP-EGFD can be widely used in automatic modeling and other evaluation systems.展开更多
The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of...The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated.展开更多
During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decisi...During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decision-makers how to conduct correct evaluation on a business and how to make strategy adjustment and selection according to the evaluation. Based on the qualitative and quantitative method, the paper introduces the Projection Pursuit Classification (PPC) model based on the Real-coded Accelerating Genetic Algorithm (RAGA) into the process of enterprises' strategy evaluation and selection. The characteristic of PPC model is that it ultimately overcomes the influence of the proportion of subjectivity and avoids precocious convergence, thus providing a new objective method for strategy evaluation and selection by pursuing the most objective strategy evaluation to make the relatively sensible strategy portfolio and action.展开更多
基金Project(51878078)supported by the National Natural Science Foundation of ChinaProject(2018-025)supported by the Training Program for High-level Technical Personnel in Transportation Industry,ChinaProject(CTKY-PTRC-2018-003)supported by the Design Theory,Method and Demonstration of Durability Asphalt Pavement Based on Heavy-duty Traffic Conditions in Shanghai Area,China。
文摘The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation.
基金The authors would like to acknowledge the funding support of the National Natural Science Foundation of China (No. 50579009, 70425001).
文摘Precise comprehensive evaluation of flood disaster loss is significant for the prevention and mitigation of flood disasters. Here, one of the difficulties involved is how to establish a model capable of describing the complex relation between the input and output data of the system of flood disaster loss. Genetic programming (GP) solves problems by using ideas from genetic algorithm and generates computer programs automatically. In this study a new method named the evaluation of the grade of flood disaster loss (EGFD) on the basis of improved genetic programming (IGP) is presented (IGP-EGFD). The flood disaster area and the direct economic loss are taken as the evaluation indexes of flood disaster loss. Obviously that the larger the evaluation index value, the larger the corresponding value of the grade of flood disaster loss is. Consequently the IGP code is designed to make the value of the grade of flood disaster be an increasing function of the index value. The result of the application of the IGP-EGFD model to Henan Province shows that a good function expression can be obtained within a bigger searched function space; and the model is of high precision and considerable practical significance. Thus, IGP-EGFD can be widely used in automatic modeling and other evaluation systems.
基金Project(2007CB714006) supported by the National Basic Research Program of China Project(90815023) supported by the National Natural Science Foundation of China
文摘The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated.
文摘During the process of enterprises' strategy evaluation and selection, there are many evaluating indicators, and among them there are some potential correlations and conflicts. Thus it poses the problems to the decision-makers how to conduct correct evaluation on a business and how to make strategy adjustment and selection according to the evaluation. Based on the qualitative and quantitative method, the paper introduces the Projection Pursuit Classification (PPC) model based on the Real-coded Accelerating Genetic Algorithm (RAGA) into the process of enterprises' strategy evaluation and selection. The characteristic of PPC model is that it ultimately overcomes the influence of the proportion of subjectivity and avoids precocious convergence, thus providing a new objective method for strategy evaluation and selection by pursuing the most objective strategy evaluation to make the relatively sensible strategy portfolio and action.