This paper presents the design of stability augmentation system (SAS) for the airship, which is robust with respect to parametric plant uncertainties. A robust pole placement approach is adopted in the design, which u...This paper presents the design of stability augmentation system (SAS) for the airship, which is robust with respect to parametric plant uncertainties. A robust pole placement approach is adopted in the design, which uses genetic algorithm (GA) as the optimization tool to derive the most robust solution of the state-feedback gain matrix K. The method can guarantee the resulting closed-loop poles to remain in a specified allocation region despite plant parameter uncertainty. Thus, the longitudinal stability of the airship is augmented by robustly assigning the closed-loop poles in a prescribed region of the left half s-plane.展开更多
文摘This paper presents the design of stability augmentation system (SAS) for the airship, which is robust with respect to parametric plant uncertainties. A robust pole placement approach is adopted in the design, which uses genetic algorithm (GA) as the optimization tool to derive the most robust solution of the state-feedback gain matrix K. The method can guarantee the resulting closed-loop poles to remain in a specified allocation region despite plant parameter uncertainty. Thus, the longitudinal stability of the airship is augmented by robustly assigning the closed-loop poles in a prescribed region of the left half s-plane.