期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于二型模糊遗传控制器的冗余自由度机械臂运动控制的研究 被引量:19
1
作者 屈海军 杨森 《中国工程机械学报》 北大核心 2021年第2期117-122,共6页
对冗余自由度机械臂的运动轨迹进行准确的控制,有助于提高工作效率以及工作质量。在对5自由度冗余机械臂结构分析的基础上,设计了一种二型模糊遗传控制器,可用于控制冗余自由度机械臂按照既定轨迹进行运动。首先,对冗余机械臂的结构进... 对冗余自由度机械臂的运动轨迹进行准确的控制,有助于提高工作效率以及工作质量。在对5自由度冗余机械臂结构分析的基础上,设计了一种二型模糊遗传控制器,可用于控制冗余自由度机械臂按照既定轨迹进行运动。首先,对冗余机械臂的结构进行分析,并借助拉格朗日函数冗余度机械臂扭矩与连杆位置关系的动力学模型。然后,通过二型隶属函数定义二型模糊集及区间二型模糊集。对区间二型模糊逻辑系统主要模块的功能进行分析,以其为核心部分设计区间二型模糊PID控制器,并制定区间二型模糊PID控制器的规则库,采用遗传算法对区间二型模糊PID控制器的参数进行选择,以对机械臂的运动轨迹进行控制。最后,采用二型模糊遗传控制器对锯齿及正弦目标轨迹进行跟踪测试,测试结果显示:与PID控制器相比,本文设计的二型模糊遗传控制器,在对锯齿及正弦目标轨迹跟踪时,最大跟踪误差分别减少5.97 mm和3.66 mm。说明本文设计的二型模糊遗传控制器,能够控制冗余度机械臂较为准确地按照目标轨迹运动。 展开更多
关键词 冗余自由度机械臂 运动控制 二型模糊遗传控制器 PID控制器 模糊
下载PDF
ABS优化模糊控制器设计
2
作者 黄嘉宁 《拖拉机与农用运输车》 2010年第2期72-75,共4页
防抱死控制系统(ABS)被用来改善车辆在较滑的路面紧急制动时的控制性能。控制目标是在适当方向增加车轮的驱动力以维持足够的车辆稳定性和转向性以及缩短车辆的制动距离。本文提出了一种ABS优化模糊控制器。目标函数被定义为维持车轮的... 防抱死控制系统(ABS)被用来改善车辆在较滑的路面紧急制动时的控制性能。控制目标是在适当方向增加车轮的驱动力以维持足够的车辆稳定性和转向性以及缩短车辆的制动距离。本文提出了一种ABS优化模糊控制器。目标函数被定义为维持车轮的滑移率在一个理想水平以便获得最大的车轮驱动力和车辆减速度。用遗传算法来优化模糊单元。仿真结果表明该控制器收敛快且在不同路面性能良好。 展开更多
关键词 防抱死控制系统(ABS) 遗传模糊控制器 基于偏差优化器 混合控制器
下载PDF
ABSs系统模糊控制器优化设计
3
作者 Ahmad Mirzaei Mehdi Moallem +1 位作者 Behzad Mirzaeian Dehkordi B. Fahimi 《传动技术》 2008年第2期23-28,共6页
已经开发了的ABSs系统改善了突然制动和特别是滑动路面状况时车辆控制。这样的控制目标是在保持车辆合适稳定性及可操纵性和缩短车辆刹车距离情况下在要求的方向增大车轮的牵引力。本文提出了ABSs系统优化的模糊控制器。从保持其车轮滑... 已经开发了的ABSs系统改善了突然制动和特别是滑动路面状况时车辆控制。这样的控制目标是在保持车辆合适稳定性及可操纵性和缩短车辆刹车距离情况下在要求的方向增大车轮的牵引力。本文提出了ABSs系统优化的模糊控制器。从保持其车轮滑动值为目标函数获得车轮最大的牵引力和车轮最大的减速度。采用遗传算法优化模糊系统的全部组件。采用误差数整体优化方法收敛接近最优点。仿真结果表明快速收敛和对不同路况的控制器的最好性能。 展开更多
关键词 抗制动侧滑系统(ABS) 误差数优化 遗传模糊控制器 混合控制器
下载PDF
EVOLUTIONARY FUZZY GUIDANCE LAW WITH SELF-ADAPTIVE REGION 被引量:3
4
作者 邹庆元 姜长生 吴柢 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第3期234-240,共7页
Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is ina... Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is inaccurate and the operating conditions are uncertain. Based on the proportional navigation, the fuzzy logic and the genetic algorithm are combined to develop an evolutionary fuzzy navigation law with self-adapt region for the air-to-air missile guidance. The line of sight (LOS) rate and the closing speed between the missile and the target are inputs of the fuzzy controller. The output of the fuzzy controller is the commanded acceleration. Then a nonlinear function based on the conventional fuzzy logic control is imported to change the region. This nonlinear function can be changed with the input variables. So the dynamic change of the fuzzy variable region is achieved. The guidance law is optimized by the genetic algorithm. Simulation results of air-to-air missile attack using MATLAB show that the method needs less acceleration and shorter flying time, and its realization is simple.[KH*3/4D] 展开更多
关键词 guidance law fuzzy logic genetic algorithm self-adaptive region
下载PDF
ADAPTIVE GENETIC ALGORITHM BASED ON SIX FUZZY LOGIC CONTROLLERS 被引量:3
5
作者 朱力立 张焕春 经亚枝 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期230-235,共6页
The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz... The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP. 展开更多
关键词 adaptive genetic algorithm fuzzy controller dynamic parameters control TSP
下载PDF
电弧炉电极调节系统GFLC算法的研究
6
作者 李强 卫敏 +1 位作者 李刚 王星 《电子技术应用》 2021年第1期73-77,共5页
电弧炉电极调节器是一种复杂的非线性模型,控制不好会消耗大量的电能和时间。为了更加准确快速地控制电极调节系统,提出了一种遗传模糊逻辑控制器(GFLC)算法,采用一种新型的编码方式来调整隶属函数及逻辑规则,从而克服了非线性系统不好... 电弧炉电极调节器是一种复杂的非线性模型,控制不好会消耗大量的电能和时间。为了更加准确快速地控制电极调节系统,提出了一种遗传模糊逻辑控制器(GFLC)算法,采用一种新型的编码方式来调整隶属函数及逻辑规则,从而克服了非线性系统不好控的太多问题,减少了复杂系统之间引起的误差影响。通过训练和验证,遗传模糊逻辑控制器能够实时调节控制参数,与传统PID控制方法比较,GFLC控制电极调节更加快速准确。 展开更多
关键词 电弧炉 电极调节系统 遗传算法 遗传模糊逻辑控制器
下载PDF
Genetic-fuzzy HEV control strategy based on driving cycle recognition 被引量:1
7
作者 邢杰 He Hongwen Zhang Xiaowei 《High Technology Letters》 EI CAS 2010年第1期39-44,共6页
A genetic-fuzzy HEV control strategy based on driving cycle recognition (DCR) was built. Six driving cycles were selected to represent different traffic conditions e.g. freeway, urban, suburb. A neural algorithm was... A genetic-fuzzy HEV control strategy based on driving cycle recognition (DCR) was built. Six driving cycles were selected to represent different traffic conditions e.g. freeway, urban, suburb. A neural algorithm was used for traffic condition recognition based on ten parameters of each driving cycle. The DCR was utilized for optimization of the HEV control parameters using a genetic-fuzzy approach. A fuzzy logic controller (FLC) was designed to be intelligent to manage the engine to work in the vicinity of its optimal condition. The fuzzy membership function parameters were optimized using the genetic algorithm (GA) for each driving cycle. The result is that the DCR_ fuzzy controller can reduce the fuel consumption by 1. 9%, higher than only CYC _ HWFET optimized fuzzy (0.2%) or CYC _ WVUSUB optimized fuzzy (0.7%). The DCR_ fuzzy method can get the better result than only optimizing one cycle on the complex real traffic conditions. 展开更多
关键词 HEV control strategy driving cycle recognition (DCR) fuzzy logic control (FLC) neural algorithm optimization genetic algorithm (GA) optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部