A novel software tool for optimization and synthesis of RF CMOS polyhase filters(PPFs),PPFOPTIMA,is developed.In the optimization engine,genetic algorithm is adopted to avoid local optima.Experiments on PPFOPTIMA demo...A novel software tool for optimization and synthesis of RF CMOS polyhase filters(PPFs),PPFOPTIMA,is developed.In the optimization engine,genetic algorithm is adopted to avoid local optima.Experiments on PPFOPTIMA demonstrate that it is an efficient design aid for design and optimization of RF CMOS PPFs.展开更多
In this paper, the glitching activity and process variations in the maximum power dissipation estimation of CMOS circuits are introduced. Given a circuit and the gate library, a new Genetic Algorithm (GA)-based techni...In this paper, the glitching activity and process variations in the maximum power dissipation estimation of CMOS circuits are introduced. Given a circuit and the gate library, a new Genetic Algorithm (GA)-based technique is developed to determine the maximum power dissipation from a statistical point of view. The simulation on 1SCAS-89 benchmarks shows that the ratio of the maximum power dissipation with glitching activity over the maximum power under zero-delay model ranges from 1.18 to 4.02. Compared with the traditional Monte Carlo-based technique, the new approach presented in this paper is more effective.展开更多
This paper aims to present and discuss the use of a power flow methodology based on Gauss elimination method to evaluate the performance of distribution network taking into account the neutral conductor absence at spe...This paper aims to present and discuss the use of a power flow methodology based on Gauss elimination method to evaluate the performance of distribution network taking into account the neutral conductor absence at specific sections, and a development of a methodology based on GA (genetic algorithm) capable of evaluating alternative solutions in different bars of the feeder, in order to propose appropriate solutions to improve the distribution network safety. Besides the technical aspects, the proposed GA methodology takes into account the economic feasibility analysis. The results of power flow simulations have shown that the presence of single-phase transformers along with the absence of the neutral conductor at specific sections of the MV (medium voltage) network may increase the Vng (neutral-to-ground voltage) levels of the feeders involved, jeopardizing the system's safety. On the other hand, the solutions proposed by the GA methodology may reduce the network Vng levels and improve the safety conditions, providing values close to the ones found before the neutral conductor theft.展开更多
文摘A novel software tool for optimization and synthesis of RF CMOS polyhase filters(PPFs),PPFOPTIMA,is developed.In the optimization engine,genetic algorithm is adopted to avoid local optima.Experiments on PPFOPTIMA demonstrate that it is an efficient design aid for design and optimization of RF CMOS PPFs.
基金Supported by NSF of the United States under contract 5978 East Asia and Pacific Program 9602485
文摘In this paper, the glitching activity and process variations in the maximum power dissipation estimation of CMOS circuits are introduced. Given a circuit and the gate library, a new Genetic Algorithm (GA)-based technique is developed to determine the maximum power dissipation from a statistical point of view. The simulation on 1SCAS-89 benchmarks shows that the ratio of the maximum power dissipation with glitching activity over the maximum power under zero-delay model ranges from 1.18 to 4.02. Compared with the traditional Monte Carlo-based technique, the new approach presented in this paper is more effective.
文摘This paper aims to present and discuss the use of a power flow methodology based on Gauss elimination method to evaluate the performance of distribution network taking into account the neutral conductor absence at specific sections, and a development of a methodology based on GA (genetic algorithm) capable of evaluating alternative solutions in different bars of the feeder, in order to propose appropriate solutions to improve the distribution network safety. Besides the technical aspects, the proposed GA methodology takes into account the economic feasibility analysis. The results of power flow simulations have shown that the presence of single-phase transformers along with the absence of the neutral conductor at specific sections of the MV (medium voltage) network may increase the Vng (neutral-to-ground voltage) levels of the feeders involved, jeopardizing the system's safety. On the other hand, the solutions proposed by the GA methodology may reduce the network Vng levels and improve the safety conditions, providing values close to the ones found before the neutral conductor theft.