期刊文献+
共找到939篇文章
< 1 2 47 >
每页显示 20 50 100
基于遗传算法优化的含氢Ti65合金人工神经网络本构模型的构建
1
作者 朱铭 夏敏 +3 位作者 田壵 邓磊 金俊松 王新云 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期232-239,共8页
本研究对不同氢含量(未置氢、0.13 wt.%、0.25 wt.%、0.34 wt.%和0.43 wt.%氢)的Ti65合金试样在其α+β两相区和β单相区、0.001 s^(-1)应变速率范围内进行等温压缩,研究了含氢Ti65合金的高温流变行为,建立了综合考虑氢含量、变形温度... 本研究对不同氢含量(未置氢、0.13 wt.%、0.25 wt.%、0.34 wt.%和0.43 wt.%氢)的Ti65合金试样在其α+β两相区和β单相区、0.001 s^(-1)应变速率范围内进行等温压缩,研究了含氢Ti65合金的高温流变行为,建立了综合考虑氢含量、变形温度、应变、应变速率的含氢Ti65合金GA-BP神经网络本构模型,并将所建模型通过二次开发集成入有限元软件中,对含氢Ti65合金等温热压缩过程进行模拟。结果表明:4-12-12-1结构的GA-BP神经网络本构模型的相关系数和平均绝对误差分别为0.9982和0.46%,模型具有较高的预测精度和泛化能力,能够用于局部置氢Ti65合金热塑成形过程的分析。 展开更多
关键词 置氢处理 Ti65合金 人工神经网络 遗传算法 本构模型
下载PDF
基于遗传算法和BP神经网络的矿区土壤重金属含量空间分布预测
2
作者 赵萍 阮旭东 +4 位作者 刘亚风 赵思逸 孙雨 常杰 周俊 《土壤》 CAS CSCD 北大核心 2024年第4期889-896,共8页
本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型——GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中p H和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As... 本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型——GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中p H和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As)含量的空间分布,并与BPNN和反比距离权重法(Inverse distance weighting,IDW)进行了比较。研究结果表明:受采矿活动影响,研究区土壤p H和重金属含量呈显著的空间分异性;GABP复合模型的数据扩增能够有效弥补BPNN对样本数量的依赖,同时结合了地理位置和高程属性,精度评价结果显示GABP模型的平均R^(2)、r、RMSE、MAE分别是IDW和BPNN的3.03倍、2.56倍,2.93倍、2.39倍,0.85倍、0.61倍,0.79倍、0.62倍,预测精度更高。模型解决了传统空间插值方法结果中可能出现负值和边界无法插值的问题,为土壤重金属含量空间分布预测提供了一种新方法。 展开更多
关键词 遗传算法 BP神经网络 GABP模型 空间分布预测 重金属含量
下载PDF
遗传算法优化的BP神经网络模型在遥感水深反演中的应用
3
作者 陈洲杰 陈华建 盛君 《测绘与空间地理信息》 2024年第10期112-114,118,共4页
针对传统BP神经网络模型在遥感影像水深反演中存在的缺陷,本文引入主成分分析(PCA)与遗传算法(GA),构建新的GA-BP神经网络模型,该改进模型利用GA对BP神经网络模型的权值与阈值进行优化并将优化值作为BP神经网络模型初始值。将该改进模... 针对传统BP神经网络模型在遥感影像水深反演中存在的缺陷,本文引入主成分分析(PCA)与遗传算法(GA),构建新的GA-BP神经网络模型,该改进模型利用GA对BP神经网络模型的权值与阈值进行优化并将优化值作为BP神经网络模型初始值。将该改进模型用于遥感影像水深反演实验中,结果表明,较单一的BP神经网络模型,该改进模型的收敛速度具有较大提升,水深反演精度也更高。 展开更多
关键词 BP神经网络模型 主成分分析 遗传算法 水深反演 权值和阈值优化
下载PDF
基于遗传算法优化投影寻踪技术的神经网络集成模型及其应用
4
作者 吴春梅 吴建生 +1 位作者 邓丽 罗芳琼 《计算机应用与软件》 CSCD 2009年第8期115-119,共5页
首先利用遗传算法优化的投影寻踪技术对神经网络学习矩阵降维,再利用Bagging技术和不同的神经网络学习算法生成集成个体,并再次用遗传算法进化的投影寻踪技术对神经网络个体集成。建立基于遗传算法优化的投影寻踪技术神经网络集成模型,... 首先利用遗传算法优化的投影寻踪技术对神经网络学习矩阵降维,再利用Bagging技术和不同的神经网络学习算法生成集成个体,并再次用遗传算法进化的投影寻踪技术对神经网络个体集成。建立基于遗传算法优化的投影寻踪技术神经网络集成模型,通过上证指数开盘价、收盘价进行实例分析,计算结果表明该方法具有较好的学习能力和泛化能力,在股市预测中预测精度高、稳定性好。 展开更多
关键词 投影寻踪 遗传算法 神经网络集成 股市预测
下载PDF
基于BP人工神经网络与遗传算法的航速优化
5
作者 陈映彬 文逸彦 +2 位作者 董国祥 屠海洋 张焱飞 《舰船科学技术》 北大核心 2024年第1期82-87,共6页
为了进一步提高船舶能耗效率,本文提出一种基于BP人工神经网络与遗传算法的航速优化技术路线。首先,介绍常见油耗模型的构建方法;其次,利用BP人工神经网络建立目标船舶的油耗模型。模型预测的平均绝对误差为2.3%,准确度和泛化能力基本... 为了进一步提高船舶能耗效率,本文提出一种基于BP人工神经网络与遗传算法的航速优化技术路线。首先,介绍常见油耗模型的构建方法;其次,利用BP人工神经网络建立目标船舶的油耗模型。模型预测的平均绝对误差为2.3%,准确度和泛化能力基本满足工程应用要求。最后,利用遗传算法,并基于历史气象数据对目标船舶的航线做分段航速优化。计算结果表明,航速优化后目标船舶的航行时长不仅能减少1.35天,燃油损耗还可节省10.1%,由此说明对航行船舶做分段航速优化是一种可行方案。 展开更多
关键词 BP神经网络 遗传算法 油耗模型 航速优化
下载PDF
基于BP神经网络和遗传算法的智能配煤系统开发与应用
6
作者 徐凌霄 张保忠 +3 位作者 何有林 朱春梅 郑超 田永胜 《煤化工》 CAS 2024年第4期6-11,共6页
针对炼焦煤品种繁多,同一矿点来煤的煤质波动较大,混煤现象严重的问题,宁波钢铁有限公司通过搭建煤焦数据库,开发智能配煤系统,实现全流程监测煤焦数据变化。智能配煤系统结合历史生产数据分析提取影响焦炭质量的关键指标,采用多元线性... 针对炼焦煤品种繁多,同一矿点来煤的煤质波动较大,混煤现象严重的问题,宁波钢铁有限公司通过搭建煤焦数据库,开发智能配煤系统,实现全流程监测煤焦数据变化。智能配煤系统结合历史生产数据分析提取影响焦炭质量的关键指标,采用多元线性回归和BP神经网络的建模方法,建立焦炭质量关键指标预测模型。同时,智能配煤系统结合焦炭质量预测模型、配煤专家系统和炼焦单种煤库存信息,采用优化后的遗传算法进行配煤模型的构建,从而实现快速实时调整配比、合理利用炼焦煤资源、稳定焦炭质量并且有效降低炼焦成本的目的。智能配煤系统运行稳定,实现了对炼焦煤资源的合理利用和降本增效的目的。 展开更多
关键词 BP神经网络 遗传算法 焦炭质量预测模型 智能配煤系统 煤焦数据库
下载PDF
小波降噪及改进遗传算法的BP神经网络在基坑变形中的组合应用
7
作者 朱志成 靳海亮 《测绘与空间地理信息》 2024年第7期169-173,共5页
以某市人民医院基坑工程为例,针对实测数据建立实测数据结合BP神经网络预测模型,小波降噪结合BP神经网络模型和小波降噪结合改进遗传算法优化的BP神经网络模型,并利用误差分析理论对基坑变形数据预测效果评价。结果表明:对比3种模型实... 以某市人民医院基坑工程为例,针对实测数据建立实测数据结合BP神经网络预测模型,小波降噪结合BP神经网络模型和小波降噪结合改进遗传算法优化的BP神经网络模型,并利用误差分析理论对基坑变形数据预测效果评价。结果表明:对比3种模型实际处理、预测数据能力,实测数据结合BP神经网络模型预测精度在1%-4%之间,小波降噪结合BP神经网络模型预测精度1%-2%之间,小波降噪结合改进遗传算法优化的BP神经网络模型预测精度在1%以内,小波降噪结合改进遗传算法优化的BP神经网络模型的预测准确率最高。针对基坑变形监测,小波降噪结合改进遗传算法优化的BP神经网络模型具有更高预测精度,可为类似工程提供实际参考。 展开更多
关键词 基坑监测 组合模型 BP神经网络 小波分析 改进遗传算法
下载PDF
基于实数编码遗传算法的神经网络成本预测模型及其应用 被引量:12
8
作者 刘威 李小平 +1 位作者 毛慧欧 柴天佑 《控制理论与应用》 EI CAS CSCD 北大核心 2004年第3期423-426,431,共5页
在生产过程中,影响产品成本的因素多而复杂,因素之间相互影响,存在耦合现象,因此准确预测成本是一个重要又难以解决的问题.通过遗传算法(GeneticAlgorithm)与误差反向传播(ErrorBackPropagation)神经网络相结合,提出了用实数编码的自适... 在生产过程中,影响产品成本的因素多而复杂,因素之间相互影响,存在耦合现象,因此准确预测成本是一个重要又难以解决的问题.通过遗传算法(GeneticAlgorithm)与误差反向传播(ErrorBackPropagation)神经网络相结合,提出了用实数编码的自适应变异遗传算法训练神经网络权重的混合算法,避免了传统神经网络易陷入局部极小的缺点.以矩阵形式表示产品成本组成,建立了产品成本组成模型,以此为基础建立了考虑成本因素之间互相影响的神经网络产品成本预测模型,并成功应用于某钢铁企业产品成本的预测,提高了预测精度. 展开更多
关键词 实数编码 遗传算法 神经网络 成本预测模型 成本控制 信息集成技术 BP网络
下载PDF
遗传算法与神经网络结合优化焊接接头力学性能预测模型 被引量:20
9
作者 董志波 魏艳红 +1 位作者 占小红 魏永强 《焊接学报》 EI CAS CSCD 北大核心 2007年第12期69-72,共4页
基于建立的反向传播(back propagation,BP)神经网络焊接接头力学性能预测模型,并综合运用遗传算法(genetic algorithm,GA)来优化BP神经网络连接权的方法,对模型预测性能进行了有效的改进,提高了神经网络模型的预测精度和泛化能力。对模... 基于建立的反向传播(back propagation,BP)神经网络焊接接头力学性能预测模型,并综合运用遗传算法(genetic algorithm,GA)来优化BP神经网络连接权的方法,对模型预测性能进行了有效的改进,提高了神经网络模型的预测精度和泛化能力。对模型性能的分析表明,焊接接头力学性能预测模型的预测规律符合已有研究结论,预测误差小于5%。随着样本数据的不断充实,样本覆盖空间的不断扩大,力学性能预测模型的应用范围将不断扩大,其实际应用价值也必将越来越高。 展开更多
关键词 遗传算法 神经网络 反向传播 力学性能预测模型
下载PDF
旋转机械的遗传算法优化神经网络预测模型 被引量:15
10
作者 徐小力 徐洪安 王少红 《机械工程学报》 EI CAS CSCD 北大核心 2003年第2期140-144,共5页
趋势预测是实现旋转机械先进的预知维护的关键技术,神经网络模型预测是实现趋势预测的新途径。当前旋转机械状态预测神经网络对环境的适应性较差、预测精度较低。针对这个问题,提出了一种在线自适应趋势预测方法。利用遗传算法(GA)的并... 趋势预测是实现旋转机械先进的预知维护的关键技术,神经网络模型预测是实现趋势预测的新途径。当前旋转机械状态预测神经网络对环境的适应性较差、预测精度较低。针对这个问题,提出了一种在线自适应趋势预测方法。利用遗传算法(GA)的并行搜索能力对BP网络结构参数进行动态优化。改进后的预测模型能够根据不同条件对结构参数进行动态优化,取得了较理想的在线预测效果。 展开更多
关键词 旋转机械 遗传算法 神经网络 预测模型 GA优化 预知维护
下载PDF
基于遗传算法的洪水灾情评估神经网络模型探讨 被引量:52
11
作者 金菊良 魏一鸣 杨晓华 《灾害学》 CSCD 1998年第2期6-11,共6页
洪水灾情评估实际上是一种模式识别问题,而人工神经网络模型具有逼近有界闭子集上任意非线性映射的特性,且模型更新方便.本文提出了基于遗传算法的洪水灾情评估神经网络模型,阐述了其基本原理和其法,实例研究表明其实用性、客观性... 洪水灾情评估实际上是一种模式识别问题,而人工神经网络模型具有逼近有界闭子集上任意非线性映射的特性,且模型更新方便.本文提出了基于遗传算法的洪水灾情评估神经网络模型,阐述了其基本原理和其法,实例研究表明其实用性、客观性和通用性. 展开更多
关键词 洪水 灾情评估 神经网络 遗传算法 神经网络模型
下载PDF
基于遗传算法的神经网络经济预测模型的建立 被引量:11
12
作者 陈朝阳 胡乐群 万鹤群 《预测》 CSSCI 1997年第1期68-70,共3页
针对神经网络模型的结构特性,提出将遗传算法用于神经网络结合,克服了神经网络模型容易陷入局部极小点的缺点,并将其应用于经济的预测及组合预测中。
关键词 神经网络模型 遗传算法 经济预测
下载PDF
基于遗传算法优化的煤粉着火温度BP神经网络预测模型 被引量:9
13
作者 杨建国 赵虹 岑可法 《煤炭学报》 EI CAS CSCD 北大核心 2006年第2期211-214,共4页
采用遗传算法(GA)对BP神经网络(结构和初始权值、阈值)进行了优化,获得了影响煤粉着火温度预测的主要煤质指标(Mad,Aad,Vad,Oad),建立了优化的煤粉着火温度BP神经网络预测模型.对20个校验样本的预测结果表明:预测值与试验值的平均相对... 采用遗传算法(GA)对BP神经网络(结构和初始权值、阈值)进行了优化,获得了影响煤粉着火温度预测的主要煤质指标(Mad,Aad,Vad,Oad),建立了优化的煤粉着火温度BP神经网络预测模型.对20个校验样本的预测结果表明:预测值与试验值的平均相对误差为0.29%,均方差为59.29,达到了较高的预测精度. 展开更多
关键词 煤粉 着火温度 遗传算法 神经网络 预测模型
下载PDF
基于遗传算法的BP神经网络时间序列预测模型 被引量:55
14
作者 钟颖 汪秉文 《系统工程与电子技术》 EI CSCD 北大核心 2002年第4期9-11,共3页
神经网络能以任意精度逼近非线性函数 ,以神经网络为基础的时间序列预测模型能很好地反映非线性系统发展的趋势 ,但神经网络训练速度慢、易陷入局部极值。针对这种情况 ,用具有良好的全局搜索能力的遗传算法来改进神经网络时间序列预测... 神经网络能以任意精度逼近非线性函数 ,以神经网络为基础的时间序列预测模型能很好地反映非线性系统发展的趋势 ,但神经网络训练速度慢、易陷入局部极值。针对这种情况 ,用具有良好的全局搜索能力的遗传算法来改进神经网络时间序列预测模型 ,提出了一种将遗传算法和BP算法相结合的学习算法来训练BP神经网络 ,并将该神经网络时间序列预测模型应用于某时间序列的预测。 展开更多
关键词 遗传算法 BP神经网络 时间序列预测模型
下载PDF
基于遗传算法的人工神经网络模型在冬小麦根系分布预报中的应用 被引量:9
15
作者 罗长寿 左强 李保国 《应用生态学报》 CAS CSCD 2004年第2期354-356,共3页
In this study, a controlled experiment of winter wheat under water stress at the seedling stage was conducted in soil columns in greenhouse. Based on the data gotten from the experiment, a model to estimate root lengt... In this study, a controlled experiment of winter wheat under water stress at the seedling stage was conducted in soil columns in greenhouse. Based on the data gotten from the experiment, a model to estimate root length density distribution was developed through optimizing the weights of neural network by genetic algorithm. The neural network model was constructed by using forward neural network framework, by applying the strategy of the roulette wheel selection and reserving the most optimizing series of weights, which were composed by real codes. This model was applied to predict the root length density distribution of winter wheat, and the predicted root length density had good agreement with experiment data. The way could save a lot of manpower and material resources for determining the root length density distribution of winter wheat. 展开更多
关键词 遗传算法 人工神经网络模型 冬小麦 根系分布
下载PDF
基于遗传算法的神经网络木材消耗量预测模型研究 被引量:6
16
作者 刘素青 周畅 杜盛珍 《林业科学》 EI CAS CSCD 北大核心 2001年第3期122-125,共4页
本文介绍了基于遗传算法的神经网络模型 ,应用该模型对我国山东省木材消耗量进行了预测 ,结果表明 ,预测精度高 。
关键词 神经网络 木材消耗量 预测模型 遗传算法
下载PDF
基于神经网络和遗传算法的事例最近邻法检索模型 被引量:9
17
作者 王玉 邢渊 阮雪榆 《高技术通讯》 EI CAS CSCD 2002年第5期76-81,共6页
提出了基于自适应共振神经网络ART1模型进行事例的智能层次聚类和基于遗传算法 (GA)进行事例特征权值优化的解决方案。经过ART1网络的层次聚类形成事例库的层次智能存储组织 ,可有效缩小事例的搜索空间 ,提高检索效率。基于GA对特征权... 提出了基于自适应共振神经网络ART1模型进行事例的智能层次聚类和基于遗传算法 (GA)进行事例特征权值优化的解决方案。经过ART1网络的层次聚类形成事例库的层次智能存储组织 ,可有效缩小事例的搜索空间 ,提高检索效率。基于GA对特征权值优化可提高检索质量 ,防止检索出的相似度系数最大的事例并非最佳事例 ,即K NN收敛不到最佳解。因此所提方法的运用可有效提高CBR系统整体的检索效率与质量 。 展开更多
关键词 检索模型 最近邻法 ART1 神经网络 遗传算法 事例推理
下载PDF
基于遗传算法的神经网络集成方法 被引量:4
18
作者 刘威 周定宁 +2 位作者 白润才 黄敏 成秘 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2019年第2期187-192,共6页
针对单一神经网络学习器易出现过拟合现象、网络泛化能力差等问题,提出一种基于遗传算法的神经网络集成方法.该方法通过对数据的预处理,将遗传算法作为集成学习的结合策略,在保证个体学习器分类准确率的同时,充分吸收个体学习器的多样性... 针对单一神经网络学习器易出现过拟合现象、网络泛化能力差等问题,提出一种基于遗传算法的神经网络集成方法.该方法通过对数据的预处理,将遗传算法作为集成学习的结合策略,在保证个体学习器分类准确率的同时,充分吸收个体学习器的多样性,利用遗传操作与物种入侵的方式对神经网络集成学习器进行迭代进化,得到具有全局最优的神经网络集成学习器.研究结果表明:使用该神经网络个体学习器集成方法训练出来的集成学习器具有良好的全局性,能够有效的避免网络出现的过拟合现象,提高网络的分类准确率,是一种稳定、泛化能力较强的神经网络集成学习器. 展开更多
关键词 集成学习 神经网络 遗传算法 机器学习 数据预处理
下载PDF
基于遗传算法的BP神经网络模型在桩孔质量检测中的应用 被引量:4
19
作者 徐启程 叶友林 孙常春 《沈阳建筑大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期333-340,共8页
目的将改进的神经网络模型应用于钻孔灌注桩桩孔质量的智能化识别,从而减少人为的误判、漏判情况.方法将遗传算法与神经网络模型有机地结合起来,建立桩孔质量检测的智能化模型,先利用遗传算法对神经网络的权值和阈值进行优化,再结合训... 目的将改进的神经网络模型应用于钻孔灌注桩桩孔质量的智能化识别,从而减少人为的误判、漏判情况.方法将遗传算法与神经网络模型有机地结合起来,建立桩孔质量检测的智能化模型,先利用遗传算法对神经网络的权值和阈值进行优化,再结合训练完成的神经网络模型对桩孔质量进行预测,同时根据现场数据建立三维分析图,通过预测结果与三维分析图的比对来验证模型的准确性.结果测试样本的仿真误差为0.005 75,训练样本的仿真误差为0.022 4;5、6号桩孔的预测结果为(0.001 2,0.999 9),(0.002 7,0.005 1),即5号桩质量为合格,6号桩质量为良好.结论通过预测结果与三维分析图的比对结果,可以得出基于遗传算法的神经网络模型能够较好地对孔灌注桩进行智能判别. 展开更多
关键词 桩基检测 遗传算法 神经网络模型 阈值 三维分析模型
下载PDF
改进遗传算法的神经网络模型研究 被引量:11
20
作者 罗长寿 周丽英 《情报杂志》 CSSCI 北大核心 2005年第5期65-66,共2页
神经网络模型及遗传算法在信息识别、分析与处理方面有着广泛的应用前景。通过对实数编码的遗传算法进行分析,给出了一种改进的优化神经网络模型权值的遗传算法,试验表明,改进的遗传算法可以使神经网络模型的收敛性和稳定性得到明显改善... 神经网络模型及遗传算法在信息识别、分析与处理方面有着广泛的应用前景。通过对实数编码的遗传算法进行分析,给出了一种改进的优化神经网络模型权值的遗传算法,试验表明,改进的遗传算法可以使神经网络模型的收敛性和稳定性得到明显改善,并且可以减少优化时间。 展开更多
关键词 遗传算法 模型研究 神经网络模型 信息识别 稳定性 收敛性 优化 实数
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部