可扩展有限状态机EFSM(Extended Finite State Machine)是目前常用的一种描述软件状态和行为的模型,研究EFSM模型的测试数据自动生成方法具有重要的意义。针对EFSM模型,本文提出一种面向EFSM路径的测试数据自动生成方法,利用多种群遗传...可扩展有限状态机EFSM(Extended Finite State Machine)是目前常用的一种描述软件状态和行为的模型,研究EFSM模型的测试数据自动生成方法具有重要的意义。针对EFSM模型,本文提出一种面向EFSM路径的测试数据自动生成方法,利用多种群遗传算法MPGA(Multi-Population Genetic Algorithm)实现了EFSM测试数据的自动生成。实验结果表明,基于MPGA的EFSM模型测试数据自动生成是确实可行的,并且其测试数据生成效率优于遗传算法(GA)的测试数据生成效率。同时,通过实验分析了MPGA的种群数量、迁移间隔、迁移率、迁移策略等相关参数对EFSM模型测试数据生成效率的影响,得出一种最优的参数组合,对后续进一步利用MPGA进行测试数据自动生成的研究具有一定的指导意义。展开更多