Pharmacogenetics and pharmacogenomics deal with the role of genetic factors in drug effectiveness and adverse drug reactions. The promise of a personalized medicine is beginning to be explored but requires much more c...Pharmacogenetics and pharmacogenomics deal with the role of genetic factors in drug effectiveness and adverse drug reactions. The promise of a personalized medicine is beginning to be explored but requires much more clinical and translational research. Specific DNA abnormalities in some cancers already have led to effective targeted treatments. Racially determined frequency differences in pharmacogenetic traits may affect choice of treatment requiring specific testing rather than basing treatments according to racial designation. The role of genes in variable responses to foreign chemicals (xenobiotics) has been termed ecogenetics or toxicogenetics raising problems in public health and occupational medicine. Nutrigenetics refers to genetic variation in response to nutrients and may affect nutritional requirements and predisposition to chronic disease.展开更多
The process of intestinal adaptation("enteroplasticity") is complex and multifaceted.Although a number of trophic nutrients and non-nutritive factors have been identified in animal studies,successful,reprodu...The process of intestinal adaptation("enteroplasticity") is complex and multifaceted.Although a number of trophic nutrients and non-nutritive factors have been identified in animal studies,successful,reproducible clinical trials in humans are awaited.Understanding mechanisms underlying this adaptive process may direct research toward strategies that maximize intestinal function and impart a true clinical benefit to patients with short bowel syndrome,or to persons in whom nutrient absorption needs to be maximized.In this review,we consider the morphological,kinetic and membrane biochemical aspects of enteroplasticity,focus on the importance of nutritional factors,provide an overview of the many hormones that may alter the adaptive process,and consider some of the possible molecular profiles.While most of the data is derived from rodent studies,wherever possible,the results of human studies of intestinal enteroplasticity are provided.展开更多
Our objective is to solve the lactose malabsorption and intolerance of human beings by combining micro-ecology path with genetic engineering technique. Plasmid pMG36e was used to clone and express a β-galactosidase g...Our objective is to solve the lactose malabsorption and intolerance of human beings by combining micro-ecology path with genetic engineering technique. Plasmid pMG36e was used to clone and express a β-galactosidase gene from L. delbrueckü bulgaricus strain 1.1480 in the Lactococcus lactis subsp. cremoris MG1363 and Lactococcus lactis subsp. lactis IL1403. The recombinant plasmid was preserved and proliferated in Escherichia coli ( E. coli) JM109, and transformed into MG1363 and IL1403 by electroporation. The protein expression was studied. ( 1 ) The bifidobacterium culture medium ( BBL) was suitable for the growth of the strain 1.1480. (2) With 13 amino acids at the N-terminus from the vector, β-gal- actosidase fusion protein (which retained the enzyme activity) could be successfully expressed in E. coli JM109, MG1363 and IL1403, but the expression quantity was larger in the former than in the latter two. (3) The SD sequence designed could be successfully recognized by both the E. coli and the Lactococcus lactis, but the expression level of the non-fusion β-galac- tosidase protein was lower than that of the fusion protein in the same host. The β-galactosidase genetically engineered E. coli JM109 is a useful tool to produce this enzyme in vitro . The signal peptide of the usp45 protein from the Lactococcus lac- tis can be added before the promoter sequence to promote β-galactosidase secretion from Lactococcus lactis . The potential ap- plication of the β-galactosidase genetically engineered MG1363 and IL1403 to cure the lactose malabsorption and lactose in- tolerance in both health food and medicine is promising.展开更多
Inadequate quality and quantity diet is one of the major reasons for high levels of malnutrition in pregnant women. A cross-sectional survey was conducted in Wondo Genet District, Southern Ethiopia. A two-stage cluste...Inadequate quality and quantity diet is one of the major reasons for high levels of malnutrition in pregnant women. A cross-sectional survey was conducted in Wondo Genet District, Southern Ethiopia. A two-stage cluster sampling technique was used to select a representative sample of 153 pregnant women aged 19-49 years from three rural villages ("Kebeles"). Energy and nutrient intakes from foods were calculated from one-day weighed food records on a sub-sample (n = 77). The result of the study showed that the intakes of most nutrients were lower than the recommended intake. The energy intake of the study participants both in 2nd and 3rd trimesters of pregnancy were 2,308 kcal and 1,420.5 kcal compared to the recommended 2,340 kcal and 2,452 kcal, respectively. Except iron, almost all micronutrient intakes were lower than the recommended intake. Vitamin A intake was 3/ag compared with the recommended 800μg, while protein intake of the study respondents in 2nd and 3rd trimester of pregnancy was 45.9 g and 31.5 g, respectively, compared with the recommended 71 g. Risk factors for undernutrition were multiple pregnancy and no consumption of cereal-based foods. This study revealed that the energy and nutrient intake of the pregnant women in study area was below the recommended intakes. Furthermore, the situation might be aggravated by high phytate content food consumption reported. Nutritional status of pregnant women in study area was not adequate to support the increased energy and nutrient requirement of the participants.展开更多
文摘Pharmacogenetics and pharmacogenomics deal with the role of genetic factors in drug effectiveness and adverse drug reactions. The promise of a personalized medicine is beginning to be explored but requires much more clinical and translational research. Specific DNA abnormalities in some cancers already have led to effective targeted treatments. Racially determined frequency differences in pharmacogenetic traits may affect choice of treatment requiring specific testing rather than basing treatments according to racial designation. The role of genes in variable responses to foreign chemicals (xenobiotics) has been termed ecogenetics or toxicogenetics raising problems in public health and occupational medicine. Nutrigenetics refers to genetic variation in response to nutrients and may affect nutritional requirements and predisposition to chronic disease.
文摘The process of intestinal adaptation("enteroplasticity") is complex and multifaceted.Although a number of trophic nutrients and non-nutritive factors have been identified in animal studies,successful,reproducible clinical trials in humans are awaited.Understanding mechanisms underlying this adaptive process may direct research toward strategies that maximize intestinal function and impart a true clinical benefit to patients with short bowel syndrome,or to persons in whom nutrient absorption needs to be maximized.In this review,we consider the morphological,kinetic and membrane biochemical aspects of enteroplasticity,focus on the importance of nutritional factors,provide an overview of the many hormones that may alter the adaptive process,and consider some of the possible molecular profiles.While most of the data is derived from rodent studies,wherever possible,the results of human studies of intestinal enteroplasticity are provided.
文摘Our objective is to solve the lactose malabsorption and intolerance of human beings by combining micro-ecology path with genetic engineering technique. Plasmid pMG36e was used to clone and express a β-galactosidase gene from L. delbrueckü bulgaricus strain 1.1480 in the Lactococcus lactis subsp. cremoris MG1363 and Lactococcus lactis subsp. lactis IL1403. The recombinant plasmid was preserved and proliferated in Escherichia coli ( E. coli) JM109, and transformed into MG1363 and IL1403 by electroporation. The protein expression was studied. ( 1 ) The bifidobacterium culture medium ( BBL) was suitable for the growth of the strain 1.1480. (2) With 13 amino acids at the N-terminus from the vector, β-gal- actosidase fusion protein (which retained the enzyme activity) could be successfully expressed in E. coli JM109, MG1363 and IL1403, but the expression quantity was larger in the former than in the latter two. (3) The SD sequence designed could be successfully recognized by both the E. coli and the Lactococcus lactis, but the expression level of the non-fusion β-galac- tosidase protein was lower than that of the fusion protein in the same host. The β-galactosidase genetically engineered E. coli JM109 is a useful tool to produce this enzyme in vitro . The signal peptide of the usp45 protein from the Lactococcus lac- tis can be added before the promoter sequence to promote β-galactosidase secretion from Lactococcus lactis . The potential ap- plication of the β-galactosidase genetically engineered MG1363 and IL1403 to cure the lactose malabsorption and lactose in- tolerance in both health food and medicine is promising.
文摘Inadequate quality and quantity diet is one of the major reasons for high levels of malnutrition in pregnant women. A cross-sectional survey was conducted in Wondo Genet District, Southern Ethiopia. A two-stage cluster sampling technique was used to select a representative sample of 153 pregnant women aged 19-49 years from three rural villages ("Kebeles"). Energy and nutrient intakes from foods were calculated from one-day weighed food records on a sub-sample (n = 77). The result of the study showed that the intakes of most nutrients were lower than the recommended intake. The energy intake of the study participants both in 2nd and 3rd trimesters of pregnancy were 2,308 kcal and 1,420.5 kcal compared to the recommended 2,340 kcal and 2,452 kcal, respectively. Except iron, almost all micronutrient intakes were lower than the recommended intake. Vitamin A intake was 3/ag compared with the recommended 800μg, while protein intake of the study respondents in 2nd and 3rd trimester of pregnancy was 45.9 g and 31.5 g, respectively, compared with the recommended 71 g. Risk factors for undernutrition were multiple pregnancy and no consumption of cereal-based foods. This study revealed that the energy and nutrient intake of the pregnant women in study area was below the recommended intakes. Furthermore, the situation might be aggravated by high phytate content food consumption reported. Nutritional status of pregnant women in study area was not adequate to support the increased energy and nutrient requirement of the participants.