Synechococcus sp.CC9311 is a marine cyanobacterium characterized by type IV chromatic acclimation(CA).A genetic transformation system was developed as a first step to elucidate the molecular mechanism of CA.The result...Synechococcus sp.CC9311 is a marine cyanobacterium characterized by type IV chromatic acclimation(CA).A genetic transformation system was developed as a first step to elucidate the molecular mechanism of CA.The results show that Synechococcus sp.CC9311 cells were sensitive to four commonly used antibiotics:ampicillin,kanamycin,spectinomycin,and chloramphenicol.An integrative plasmid to disrupt the putative phycoerythrin lyase gene mpeV,using a kanamycin resistance gene as selectable marker,was constructed by recombinant polymerase chain reaction.The plasmid was then transformed into Synechococcus sp.CC9311 via electroporation.High transformation efficiency was achieved at a field strength of 2 kV/cm.DNA analysis showed that mpeV was fully disrupted following challenge of the transformants with a high concentration of kanamycin.In addition,the transformants that displayed poor growth on agar SN medium could be successfully plated on agarose SN medium.展开更多
The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel...The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel, steering sensibility, and steering operation stability are introduced. Based on quality engineering theory, the optimization algorithm is proposed by integrating the Monte Carlo descriptive sampling, elitist non-dominated sorting genetic algorithm (NSGA-II) and 6-sigma design method. With the steering road feel and the steering portability as optimization targets, the system parameters are optimized by the proposed optimization algorithm. The simulation results show that the system optimized based on quality engineering theory can improve the steering road feel, guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the novel electric power steering system.展开更多
基金Supported by the Key Innovation Project of Institute of Oceanology,Chinese Academy of Sciences(No.2009-2)the Natural Science Foundation of Shandong Province(No.2009ZRB02542)+2 种基金the Foundation of Key Laboratory of Marine Bioactive Substance and Modern Analytical Techniques,SOA(No.MBSMAT-2010-03)the National Natural Science Foundation of China(No.41276164)the Natural Science Foundation of Jiangsu Province(No.BK2012650)
文摘Synechococcus sp.CC9311 is a marine cyanobacterium characterized by type IV chromatic acclimation(CA).A genetic transformation system was developed as a first step to elucidate the molecular mechanism of CA.The results show that Synechococcus sp.CC9311 cells were sensitive to four commonly used antibiotics:ampicillin,kanamycin,spectinomycin,and chloramphenicol.An integrative plasmid to disrupt the putative phycoerythrin lyase gene mpeV,using a kanamycin resistance gene as selectable marker,was constructed by recombinant polymerase chain reaction.The plasmid was then transformed into Synechococcus sp.CC9311 via electroporation.High transformation efficiency was achieved at a field strength of 2 kV/cm.DNA analysis showed that mpeV was fully disrupted following challenge of the transformants with a high concentration of kanamycin.In addition,the transformants that displayed poor growth on agar SN medium could be successfully plated on agarose SN medium.
基金Projects(51005115,51205191)supported by the National Natural Science Foundation of ChinaProject(QC201101)supported by the Visiting Scholar Foundation of the Automobile Engineering Key Laboratory of Jiangsu Province,China+1 种基金Project(SKLMT-KFKT-201105)supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University,ChinaProjects(NS2013015,NS2012086)supported by the Funds from the Postgraduate Creative Base in Nanjing University of Areonautics and Astronautics,and NUAA Research Funding,China
文摘The dynamic model of a novel electric power steering (EPS) system integrated with active front steering function (the novel EPS system) is built. The concepts and quantitative expressions of the steering road feel, steering sensibility, and steering operation stability are introduced. Based on quality engineering theory, the optimization algorithm is proposed by integrating the Monte Carlo descriptive sampling, elitist non-dominated sorting genetic algorithm (NSGA-II) and 6-sigma design method. With the steering road feel and the steering portability as optimization targets, the system parameters are optimized by the proposed optimization algorithm. The simulation results show that the system optimized based on quality engineering theory can improve the steering road feel, guarantee steering stability and steering portability and thus provide a theoretical basis for the design and optimization of the novel electric power steering system.