期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于遗传-支持向量机的对置活塞二冲程柴油机气口高度优化 被引量:3
1
作者 鲁雪田 张付军 +1 位作者 章振宇 刘宇航 《航空动力学报》 EI CAS CSCD 北大核心 2019年第11期2387-2394,共8页
以某对置活塞二冲程柴油机为研究对象,基于一维仿真模型,利用遗传-支持向量机的方法 ,以油耗为优化目标,进行不同转速工况下进排气口高度组合的自动化寻优。结果表明:在1200r/min下,优化的进、排气口无量纲化高度组合为[0.075,0.105],... 以某对置活塞二冲程柴油机为研究对象,基于一维仿真模型,利用遗传-支持向量机的方法 ,以油耗为优化目标,进行不同转速工况下进排气口高度组合的自动化寻优。结果表明:在1200r/min下,优化的进、排气口无量纲化高度组合为[0.075,0.105],所得最小油耗为220.32g/(kW·h);对置活塞二冲程柴油机的气口最优高度应随着转速的提高逐渐增大;且在高转速(大于1 600r/min)下,排气口最优高度增加趋势更加明显。 展开更多
关键词 遗传-支持向量机 对置活塞二冲程柴油 气口高度 转速 油耗
原文传递
基于遗传算法-支持向量机的我国创新型城市评价 被引量:5
2
作者 陈莉 李运超 《中国科技论坛》 CSSCI 北大核心 2014年第11期126-131,共6页
本文建立了基于GA-SVM的创新型城市评价模型,首先对评价数据进行了预处理,然后构建创新型城市评价指标体系,并对我国创新型城市进行实证研究。本文的方法避免了建立创新型城市评价模型时,参数选择的随机性。本文还对训练集城市的预测位... 本文建立了基于GA-SVM的创新型城市评价模型,首先对评价数据进行了预处理,然后构建创新型城市评价指标体系,并对我国创新型城市进行实证研究。本文的方法避免了建立创新型城市评价模型时,参数选择的随机性。本文还对训练集城市的预测位次与真实位次进行了比较分析,验证检验结果的准确性。最后,分析了创新型城市评价结果并提出建议。 展开更多
关键词 遗传算法-支持向量 创新型城市 评价
下载PDF
基于SPA-GA-SVR模型的土壤水分及温度预测 被引量:4
3
作者 朱成杰 汪正权 《中国农村水利水电》 北大核心 2024年第1期30-36,共7页
土壤湿度和温度是影响水文循环和气候变化的重要参数,在农业实践活动和生态平衡中起着重要作用。为及时、准确地监测土壤含水量(Soil Moisture Content,SMC)及温度,提出了一种基于高光谱数据的预测方法。实验数据集来自为期5天的实地测... 土壤湿度和温度是影响水文循环和气候变化的重要参数,在农业实践活动和生态平衡中起着重要作用。为及时、准确地监测土壤含水量(Soil Moisture Content,SMC)及温度,提出了一种基于高光谱数据的预测方法。实验数据集来自为期5天的实地测量,所获得的高光谱数据包含大量的噪声及冗余信息,因此首先用Savitzky-Golay卷积平滑对光谱数据进行降噪处理,利用连续投影算法(Successive Projection Algorithm,SPA)提取数据特征波长,然后通过遗传算法(Genetic Algorithm,GA)对支持向量机回归(Support Vector Regression,SVR)的超参数权值和偏置进行优化,构建SPA-GASVR混合算法模型对土壤水分和温度进行预测,并与BP神经网络(Back Propagation Neural Network,BPNN)、SPA-BP、SVR、SPA-SVR、GA-SVR这5种模型的预测性能进行比较。实验结果表明:各模型在土壤湿度低于30%的情况下,表现出的预测能力差异并不显著。但整体上,复合模型相比于单一的神经网络或机器学习模型具有明显的优势,且经过连续投影算法优化的模型进一步的提高其预测能力,最终SPA-GA-SVR算法在各项指标上均优于其他模型,土壤水分预测模型的R^(2)=0.981、RMSE=0.473%,土壤温度预测模型R^(2)=0.963、RMSE=0.883℃。实验证明基于高光谱数据,经过SPA和GA优化的SVR模型能实现对土壤湿度和温度精准的预测。该方法具有一定的应用价值和现实意义,可应用于便携式高光谱仪和无人机上,实现对土壤水分和温度的实时监测,为今后的播种及灌溉提供理论参考。 展开更多
关键词 土壤水分 土壤温度 高光谱 连续投影算法(SPA) 遗传算法-支持向量回归(GA-SVR)
下载PDF
基于GA-SVR的数控机床热误差建模 被引量:6
4
作者 陈泽宇 龚凌云 《组合机床与自动化加工技术》 北大核心 2012年第2期9-11,15,共4页
为了提高数控机床加工精度,消除数控机床热误差对加工精度的影响,文章提出了基于GA-SVR(遗传算法-支持向量回归机)的数控机床热误差建模方法。为了构建机床的热误差模型,首先采用温度传感器与位置传感器测量机床的温度与对应的机床主轴... 为了提高数控机床加工精度,消除数控机床热误差对加工精度的影响,文章提出了基于GA-SVR(遗传算法-支持向量回归机)的数控机床热误差建模方法。为了构建机床的热误差模型,首先采用温度传感器与位置传感器测量机床的温度与对应的机床主轴变形量。其次把获得的数据进行支持向量回归机建模训练,同时使用遗传算法寻找支持向量回归机相关参数的最优值。最后建立机床热误差模型,并验证模型的准确度。结果表明,基于GA-SVR的数控机床热误差建模方法具有精度高和鲁棒性强的特点。 展开更多
关键词 遗传算法-支持向量回归 数控加工 热变形误差
下载PDF
基于改进机器学习的输电线路弧垂温度估计方法 被引量:13
5
作者 宰红斌 吴浩林 +1 位作者 王昊 王凯 《电力工程技术》 北大核心 2022年第2期209-214,223,共7页
针对采空区地质塌陷造成的杆塔倾斜、线缆断裂以及现有输电线路弧垂和温度监测过于依赖传感器等问题,提出基于改进机器学习的输电线路弧垂温度估计方法。首先,利用安装在线路上的智能摄影机和传感器获得线路的弧垂温度图像数据。然后,... 针对采空区地质塌陷造成的杆塔倾斜、线缆断裂以及现有输电线路弧垂和温度监测过于依赖传感器等问题,提出基于改进机器学习的输电线路弧垂温度估计方法。首先,利用安装在线路上的智能摄影机和传感器获得线路的弧垂温度图像数据。然后,基于远程无线通信传输至数据采集与监视控制系统(SCADA),基于遗传-支持向量机(GA-SVM)算法估计输电线路的弧垂,采用GA-Elman神经网络算法估计输电线路的温度,准确跟踪输电线路状态。最后通过搭建仿真平台对所提方法进行分析验证,实验结果表明所提方法能够快速获取复杂环境下的监测数据,并且弧垂温度估计准确率高于对比方法。 展开更多
关键词 LoRa通信 输电线路 弧垂 遗传-支持向量机(GA-SVM)算法 GA-Elman神经网络算法 非接触式监测
下载PDF
数控机床热误差建模与补偿 被引量:1
6
作者 龚凌云 陈泽宇 《制造业自动化》 北大核心 2012年第1期42-44,69,共4页
数控机床热变形误差对零件加工精度有重大影响。基于GA-SVR(遗传算法-支持向量回归机)的数控机床热误差建模方法要点有三:其一是数据采样,用不同传感器测量机床关键点的温度与机床主轴变形量。其二是数据训练,把获得的数据进行支持向量... 数控机床热变形误差对零件加工精度有重大影响。基于GA-SVR(遗传算法-支持向量回归机)的数控机床热误差建模方法要点有三:其一是数据采样,用不同传感器测量机床关键点的温度与机床主轴变形量。其二是数据训练,把获得的数据进行支持向量回归机建模训练,同时使用遗传算法寻找支持向量回归机相关参数的最优值。其三是数据建模,建立机床热误差模型,并验证模型的准确度。仿真及实验结果表明,基于GA-SVR的数控机床热误差建模方法具有精度高和鲁棒性强的特点。并依此算法建立了以DSP和A/D为核心的热误差补差补偿器。 展开更多
关键词 遗传算法-支持向量回归 热变形误差 热误差建模 热误差补偿
下载PDF
GA-SVC model and application of comprehensive evaluation of coal mine essential safety management
7
作者 Zhi-Jun WANG Rui-Lin ZHANG Wen-Ting SONG 《Journal of Coal Science & Engineering(China)》 2013年第2期226-230,共5页
In order to evaluate the level of the coal mine essential safety management, the comprehensive index system was designed base on the connotation principle of the mine essential safety management. Due to the disadvanta... In order to evaluate the level of the coal mine essential safety management, the comprehensive index system was designed base on the connotation principle of the mine essential safety management. Due to the disadvantage of index weight setting by subjective idea in the former method, support vector classification algorithm was used to assess the level of coal mine essential safety management. According to the advantages of the global search capability of the genetic algorithm, support vector classification parameters optimization method was proposed based on genetic algorithm, and genetic algorithm-support vector classification model of coal mine essential safety management assessment was established. Learning samples were constructed on the basis of former data of mine essential safety management evaluation. The test results show that the genetic algorithm-support vector classification model has higher evaluation accuracy and good generalization ability, and the advantage of no need for artificial setting of index weight and absence of the subjective factors influence to evaluation results. 展开更多
关键词 mine safety essential safety management comprehensive assessment support vector classification genetic algorithm
下载PDF
封堵矿井突水点注浆量预测研究 被引量:1
8
作者 施龙青 刘天浩 +2 位作者 于小鸽 冯涛 马金伟 《中国煤炭》 北大核心 2017年第6期110-115,119,共7页
在收集肥城煤田封堵突水点资料基础上,分析了影响注浆量的主要因素是突水水压、突水量、封堵过水通道长度、注浆压力等,借助智能算法自动获取支持向量机最佳参数的优点,优化支持向量机回归分析能力,建立GA-SVR非线性模型和PSO-SVR非线... 在收集肥城煤田封堵突水点资料基础上,分析了影响注浆量的主要因素是突水水压、突水量、封堵过水通道长度、注浆压力等,借助智能算法自动获取支持向量机最佳参数的优点,优化支持向量机回归分析能力,建立GA-SVR非线性模型和PSO-SVR非线性模型,并通过实际工程对封堵突水点注浆量做出预测。通过对比实际注浆预测结果,得出PSO-SVR模型预测结果相对准确,但预测结果波动性偏大,GA-SVR预测结果相对稳定,但预测结果误差相对偏大的特点。因此提出在进行注浆量预测时,采取两种模型同时进行注浆量预测,取其区间值,实现又快又好又经济地封堵突水点。 展开更多
关键词 突水点 遗传-支持向量回归 粒子群—支持向量回归 注浆量预测 注浆影响因素 封堵
下载PDF
基于小波包去噪和EMD的混合算法 被引量:2
9
作者 汤继磊 黄玉清 潘泽友 《太赫兹科学与电子信息学报》 2013年第2期277-281,共5页
经验模态分解(EMD)是希尔伯特黄变换(HHT)中的关键步骤,并伴有过冲和端点效应的产生。利用遗传算法(GA)对支持向量机(SVM)中的未知参数:惩罚函数C和高斯核函数中的预设参数σ进行优化选取,运用GA-SVM对信号进行端点延拓来处理端点效应... 经验模态分解(EMD)是希尔伯特黄变换(HHT)中的关键步骤,并伴有过冲和端点效应的产生。利用遗传算法(GA)对支持向量机(SVM)中的未知参数:惩罚函数C和高斯核函数中的预设参数σ进行优化选取,运用GA-SVM对信号进行端点延拓来处理端点效应问题并提出采用分段三次Hermite多项式插值进行包络线拟合;为了机械设备早期故障频率的特征提取,采用小波包降噪预处理,结合改进的Hilbert Huang变换进行轴承故障特征频率的提取实验;实验表明该方法提高了故障频率提取的准确性。 展开更多
关键词 希尔伯特黄变换 分段三次Hermite多项式插值 遗传算法-支持向量 小波包
下载PDF
Intrusion detection using rough set classification 被引量:16
10
作者 张连华 张冠华 +2 位作者 郁郎 张洁 白英彩 《Journal of Zhejiang University Science》 EI CSCD 2004年第9期1076-1086,共11页
Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learn... Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learning algorithm, is used to rank the features extracted for detecting intrusions and generate intrusion detection models. Feature ranking is a very critical step when building the model. RSC performs feature ranking before generating rules, and converts the feature ranking to minimal hitting set problem addressed by using genetic algorithm (GA). This is done in classical approaches using Support Vector Machine (SVM) by executing many iterations, each of which removes one useless feature. Compared with those methods, our method can avoid many iterations. In addition, a hybrid genetic algorithm is proposed to increase the convergence speed and decrease the training time of RSC. The models generated by RSC take the form of'IF-THEN' rules, which have the advantage of explication. Tests and comparison of RSC with SVM on DARPA benchmark data showed that for Probe and DoS attacks both RSC and SVM yielded highly accurate results (greater than 99% accuracy on testing set). 展开更多
关键词 Intrusion detection Rough set classification Support vector machine Genetic algorithm
下载PDF
Automatic target recognition of moving target based on empirical mode decomposition and genetic algorithm support vector machine 被引量:3
11
作者 张军 欧建平 占荣辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1389-1396,共8页
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S... In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively. 展开更多
关键词 automatic target recognition(ATR) moving target empirical mode decomposition genetic algorithm support vector machine
下载PDF
Nonlinear model predictive control based on support vector machine and genetic algorithm 被引量:5
12
作者 冯凯 卢建刚 陈金水 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2048-2052,共5页
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ... This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection. 展开更多
关键词 Support vector machine Genetic algorithm Nonlinear model predictive control Neural network Modeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部