锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识...锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识精度低、收敛速度慢的问题。为此,将电路分析法与FFRLS相结合,提出基于改进初值带遗忘因子的递推最小二乘法(improved initial value-FFRLS,IIV-FFRLS)。首先,通过离线辨识得到各荷电状态点对应的等效电路模型参数并进行多项式拟合;然后,利用初始开路电压(open circuit voltage,OCV)和OCV-SOC曲线获得初始SOC,代入参数拟合函数得到初始参数;最后,将初始参数带入递推公式得到IIV-FFRLS迭代初始值。对4种锂电池工况进行参数辨识,结果表明:与传统方法相比,IIV-FFRLS的平均相对误差、收敛时间分别减小58%、23%以上;IIV-FFRLS具有更高的辨识精度与更快的收敛速度。展开更多
针对Boost转换器控制性能受电感和电容变化影响的问题,提出了一种基于可变遗忘因子递推最小二乘法(recursive least squares method,RLS)的在线多参数辨识算法.考虑电感电流纹波,推导了精确的电感和电容辨识模型.在此基础上,研究了RLS...针对Boost转换器控制性能受电感和电容变化影响的问题,提出了一种基于可变遗忘因子递推最小二乘法(recursive least squares method,RLS)的在线多参数辨识算法.考虑电感电流纹波,推导了精确的电感和电容辨识模型.在此基础上,研究了RLS算法中遗忘因子动态取值问题.通过在算法的误差信号中恢复系统噪声的方法,动态计算遗忘因子的取值,解决了传统RLS算法难以兼顾稳态精度和参数跟踪能力的问题.仿真结果表明,该算法可以在动态条件下,精确且快速地跟踪电感和电容值的变化,且具有良好的鲁棒性.展开更多
电动助力转向(electric power steering,EPS)系统具有非线性和时变性,采用常系数补偿无法实现对转矩的准确跟踪,影响驾驶员手感。文章采用滑模控制器准确跟踪电流,并设计补偿算法,利用带遗忘因子的递推最小二乘(recursive least squares...电动助力转向(electric power steering,EPS)系统具有非线性和时变性,采用常系数补偿无法实现对转矩的准确跟踪,影响驾驶员手感。文章采用滑模控制器准确跟踪电流,并设计补偿算法,利用带遗忘因子的递推最小二乘(recursive least squares,RLS)算法对助力装置进行在线参数辨识,并将辨识得到的结果进行补偿控制,在参数缓慢变化的条件下实现EPS对转矩的准确跟踪。展开更多
文摘针对Boost转换器控制性能受电感和电容变化影响的问题,提出了一种基于可变遗忘因子递推最小二乘法(recursive least squares method,RLS)的在线多参数辨识算法.考虑电感电流纹波,推导了精确的电感和电容辨识模型.在此基础上,研究了RLS算法中遗忘因子动态取值问题.通过在算法的误差信号中恢复系统噪声的方法,动态计算遗忘因子的取值,解决了传统RLS算法难以兼顾稳态精度和参数跟踪能力的问题.仿真结果表明,该算法可以在动态条件下,精确且快速地跟踪电感和电容值的变化,且具有良好的鲁棒性.
文摘电动助力转向(electric power steering,EPS)系统具有非线性和时变性,采用常系数补偿无法实现对转矩的准确跟踪,影响驾驶员手感。文章采用滑模控制器准确跟踪电流,并设计补偿算法,利用带遗忘因子的递推最小二乘(recursive least squares,RLS)算法对助力装置进行在线参数辨识,并将辨识得到的结果进行补偿控制,在参数缓慢变化的条件下实现EPS对转矩的准确跟踪。