针对康复训练过程中患者肌肉痉挛会对力反馈遥操作系统稳定性和从机械手速度平滑性产生较大影响的问题,提出了一种新的基于反向传播(BP)神经网络辨识的变增益控制方法。该方法通过 BP 神经网络实时辨识患肢动力学参数的变化并进行自适...针对康复训练过程中患者肌肉痉挛会对力反馈遥操作系统稳定性和从机械手速度平滑性产生较大影响的问题,提出了一种新的基于反向传播(BP)神经网络辨识的变增益控制方法。该方法通过 BP 神经网络实时辨识患肢动力学参数的变化并进行自适应调整控制增益,不仅消除了因患者肌肉痉挛带来的不稳定性,而且减少了其对系统运动平滑性的影响,可提高康复训练效果和起到抑制患者痉挛状态的作用。分析和仿真试验结果表明,该控制方法与传统的控制方法相比,可有效地抑制患者因肌肉痉挛带来的干扰并具有较好的稳定性和平滑性。展开更多
In early morning of Aug 8th, 2010, the rain-triggered tremendous debris flows broke out simultaneously at the Sanyanyu ravine and Luojiayu ravine, which locate in the north part of Zhouqu County town. The debris flow ...In early morning of Aug 8th, 2010, the rain-triggered tremendous debris flows broke out simultaneously at the Sanyanyu ravine and Luojiayu ravine, which locate in the north part of Zhouqu County town. The debris flow is the most severe event of the same kind of disasters in the past sixty years in China, which caused great losses of people's lives and properties. Based on field investigation, remote sensing image interpretation and analysis of local climatological data, the local topographical conditions, active tectonic movement, massive debris source and torrential rains were the main formation causes which induced the catastrophic debris flows. Moreover, detailed geological surveys were carried out following the disaster, the other geological potential hazard sites were found out, and the geological and seismic hazard assessment has been put into practice. At last, scientific and appropriate countermeasures have been suggested to prevent and mitigate the extraordinarily serious debris flow.展开更多
文摘针对康复训练过程中患者肌肉痉挛会对力反馈遥操作系统稳定性和从机械手速度平滑性产生较大影响的问题,提出了一种新的基于反向传播(BP)神经网络辨识的变增益控制方法。该方法通过 BP 神经网络实时辨识患肢动力学参数的变化并进行自适应调整控制增益,不仅消除了因患者肌肉痉挛带来的不稳定性,而且减少了其对系统运动平滑性的影响,可提高康复训练效果和起到抑制患者痉挛状态的作用。分析和仿真试验结果表明,该控制方法与传统的控制方法相比,可有效地抑制患者因肌肉痉挛带来的干扰并具有较好的稳定性和平滑性。
基金Foundation item: Projects(40902094, 50978239) supported by the National Natural Science Foundation of China Project(20121ESLZ01) supported by the Institute of Earthquake Prediction, China Earthquake Administration
文摘In early morning of Aug 8th, 2010, the rain-triggered tremendous debris flows broke out simultaneously at the Sanyanyu ravine and Luojiayu ravine, which locate in the north part of Zhouqu County town. The debris flow is the most severe event of the same kind of disasters in the past sixty years in China, which caused great losses of people's lives and properties. Based on field investigation, remote sensing image interpretation and analysis of local climatological data, the local topographical conditions, active tectonic movement, massive debris source and torrential rains were the main formation causes which induced the catastrophic debris flows. Moreover, detailed geological surveys were carried out following the disaster, the other geological potential hazard sites were found out, and the geological and seismic hazard assessment has been put into practice. At last, scientific and appropriate countermeasures have been suggested to prevent and mitigate the extraordinarily serious debris flow.