期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
高分辨率遥感船舶图像细粒度检测方法 被引量:2
1
作者 申浩 荆一昕 《舰船科学技术》 北大核心 2022年第5期114-117,共4页
船舶图像细粒度检测是高分辨遥感图像分析的难题,受船舶尺寸、陆地背景、光照、风浪等因素影响,易降低图像检测的准确性。为克服船舶目标识别的影响因素,针对不同类型和型号的船舶目标检测建起特征提取算法模型,提升最终的识别精度。本... 船舶图像细粒度检测是高分辨遥感图像分析的难题,受船舶尺寸、陆地背景、光照、风浪等因素影响,易降低图像检测的准确性。为克服船舶目标识别的影响因素,针对不同类型和型号的船舶目标检测建起特征提取算法模型,提升最终的识别精度。本文提出一种基于深度学习的船舶图像细粒度检测方法,将深度学习算法应用到高分辨率遥感图像中,借助算法训练得出像素级的识别信息,实现对各类型信息的优化处理,最终生成具备辅助分类子网络功能的优化模型,提升细粒度识别精确度。 展开更多
关键词 高分辨率 遥感传播 图像细粒度检测
下载PDF
Comprehensive Analysis and Artificial Intelligent Simulation of Land Subsidence of Beijing, China 被引量:6
2
作者 ZHU Lin GONG Huili +3 位作者 LI Xiaojuan LI Yongyong SU Xiaosi GUO Gaoxuan 《Chinese Geographical Science》 SCIE CSCD 2013年第2期237-248,共12页
Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, incl... Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, including the change of groundwater level, the thickness of compressible sediments and the building area by using remote sensing and GIS tools in the upper-middle part of alluvial-proluvial plain fan of the Chaobai River in Beijing. Based on the spatial analysis of the land subsidence and three factors, there exist significant non-linear relationship between the vertical displacement and three factors. The Back Propagation Neural Network (BPN) model combined with Genetic Algorithm (GA) was used to simulate regional distribution of the land subsidence. Results showed that at field scale, the groundwater level and land subsidence showed a significant linear relationship. However, at regional scale, the spatial distribution of groundwater depletion funnel did not overlap with the land subsidence funnel. As to the factor of compressible strata, the places with the biggest compressible strata thickness did not have the largest vertical displacement. The distributions of building area and land subsidence have no obvious spatial relationships. The BPN-GA model simulation results illustrated that the accuracy of the trained model during fifty years is acceptable with an error of 51% of verification data less than 20 mm and the average of the absolute error about 32 mm. The BPN model could be utilized to simulate the general distribution of land subsidence in the study area. Overall, this work contributes to better understand the complex relationship between the land subsidence and three influencing factors. And the distribution of the land subsidence can be simulated by the trained BPN-GA model with the limited available dada and acceptable accuracy. 展开更多
关键词 land subsidence groundwater level change compressible sediments thickness building area Back Propagation NeuralNetwork and Genetic Algorithm (BPN-GA) model
下载PDF
The Monitoring of Red Tides Based on Modular Neural Networks Using Airborne Hyperspectral Remote Sensing
3
作者 JI Guangrong SUN Jie +1 位作者 ZHAO Wencang ZHANG Hande 《Journal of Ocean University of China》 SCIE CAS 2006年第2期169-173,共5页
This paper proposes a red tide monitoring method based on clustering and modular neural networks. To obtain the features of red tide from a mass of aerial remote sensing hyperspectral data, first the Log Residual Corr... This paper proposes a red tide monitoring method based on clustering and modular neural networks. To obtain the features of red tide from a mass of aerial remote sensing hyperspectral data, first the Log Residual Correction (LRC) is used to normalize the data, and then clustering analysis is adopted to select and form the training samples for the neural networks. For rapid monitoring, the discriminator is composed of modular neural networks, whose structure and learning parameters are determined by an Adaptive Genetic Algorithm (AGA). The experiments showed that this method can monitor red tide rapidly and effectively. 展开更多
关键词 aeronautic remote sensing hyper-spectral data red tide monitoring artificial neural networks
下载PDF
Classification and Identification of Nuclear, Biological or Chemical Agents Taken from Remote Sensing Image by Using Neural Network
4
作者 Said El Yamani Samir Zeriouh Mustapha Boutahri Ahmed Roukhe 《Journal of Physical Science and Application》 2014年第3期177-182,共6页
In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural n... In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural network approach seems to be more accurate. PCA consists in projecting the spectrum of a gas collected from a remote sensing system in, firstly, a three-dimensional space, then in a two-dimensional one using a model of Multi-Layer Perceptron based neural network. It adopts during the learning process, the back propagation algorithm of the gradient, in which the mean square error output is continuously calculated and compared to the input until it reaches a minimal threshold value. This aims to correct the synaptic weights of the network. So, the Artificial Neural Network (ANN) tends to be more efficient in the classification process. This paper emphasizes the contribution of the ANN method in the spectral data processing, classification and identification and in addition, its fast convergence during the back propagation of the gradient. 展开更多
关键词 Artificial neural networks classification identification principal component analysis multi-layer perceptron back propagation of the gradient.
下载PDF
Wave steepness retrieved from scatterometer data in a genetic algorithm
5
作者 过杰 何宜军 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2012年第2期336-341,共6页
Wave steepness is an important characteristic of a high sea state, and is widely applied on wave propagations at ports, ships, offshore platforms, and CO2 circulation in the ocean. Obtaining wave steepness is a diffic... Wave steepness is an important characteristic of a high sea state, and is widely applied on wave propagations at ports, ships, offshore platforms, and CO2 circulation in the ocean. Obtaining wave steepness is a difficult task that depends heavily on theoretical research on wavelength distribution and direct observations. Development of remote-sensing techniques provides new opportunities to study wave steepness. At present, two formulas are proposed to estimate wave steepness from QuikSCAT and ERS-1/2 scatterometer data. We found that wave steepness retrieving is not affected by radar band, and polarization method, and that relationship of wave steepness with radar backscattering cross section is similar to that with wind. Therefore, we adopted and modified a genetic algorithm for relating wave steepness with radar backscattering cross section. Results show that the root-mean-square error of the wave steepness retrieved is 0.005 in two cases from ERS-1/2 scatterometer data and from QuikSCAT scatterometer data. 展开更多
关键词 wave steepness genetic algorithm scatterometer data buoy data
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部