期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
遥感估算法在森林碳汇估算中的应用进展
1
作者 郭靖 张东亚 +1 位作者 玉苏普江.艾麦提 齐成 《防护林科技》 2016年第1期61-62,共2页
作为陆地生态系统主体,森林具有碳源和碳汇的双重作用。目前,国内外众多学者对区域尺度森林碳汇的估算提出的方法较多,但还没有统一的估算方法。遥感估算法是估算森林碳汇的重要方法之一。通过总结该方法的优缺点及应用范围,为碳储量估... 作为陆地生态系统主体,森林具有碳源和碳汇的双重作用。目前,国内外众多学者对区域尺度森林碳汇的估算提出的方法较多,但还没有统一的估算方法。遥感估算法是估算森林碳汇的重要方法之一。通过总结该方法的优缺点及应用范围,为碳储量估算精度和碳评估提供合理的参考。 展开更多
关键词 遥感估算法 森林碳汇 碳汇估算
下载PDF
森林碳储量估算方法综述 被引量:29
2
作者 续珊珊 《林业调查规划》 2014年第6期28-33,共6页
介绍样地清查法、微气象学法、箱式法、模型模拟法、遥感估算法等森林碳储量的主要估算方法。在对各种方法的主要原理及应用实例进行分析的基础上,指出了各方法的适用性和不足之处,认为在研究大尺度的森林生态系统碳汇储量时,多学科融... 介绍样地清查法、微气象学法、箱式法、模型模拟法、遥感估算法等森林碳储量的主要估算方法。在对各种方法的主要原理及应用实例进行分析的基础上,指出了各方法的适用性和不足之处,认为在研究大尺度的森林生态系统碳汇储量时,多学科融合、各种方法综合运用是准确估算森林碳储量的有效手段。 展开更多
关键词 森林碳储量 估算 样地清查 微气象学 箱式 模型模拟 遥感估算法
下载PDF
Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage:A Case Study from Beijing Municipality,China 被引量:6
3
作者 HU Deyong CHEN Shanshan +1 位作者 QIAO Kun CAO Shisong 《Chinese Geographical Science》 SCIE CSCD 2017年第4期614-625,共12页
The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS val... The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS values over large areas can be extracted,and these data are significant for studies of urban climate,environment and hydrology.To develop a stabilized,multi-temporal SPIS estimation method suitable for typical temperate semi-arid climate zones with distinct seasons,an optimal model for estimating SPIS values within Beijing Municipality was built that is based on the classification and regression tree(CART) algorithm.First,models with different input variables for SPIS estimation were built by integrating multi-source remote sensing data with other auxiliary data.The optimal model was selected through the analysis and comparison of the assessed accuracy of these models.Subsequently,multi-temporal SPIS mapping was carried out based on the optimal model.The results are as follows:1) multi-seasonal images and nighttime light(NTL) data are the optimal input variables for SPIS estimation within Beijing Municipality,where the intra-annual variability in vegetation is distinct.The different spectral characteristics in the cultivated land caused by the different farming characteristics and vegetation phenology can be detected by the multi-seasonal images effectively.NLT data can effectively reduce the misestimation caused by the spectral similarity between bare land and impervious surfaces.After testing,the SPIS modeling correlation coefficient(r) is approximately 0.86,the average error(AE) is approximately 12.8%,and the relative error(RE) is approximately 0.39.2) The SPIS results have been divided into areas with high-density impervious cover(70%–100%),medium-density impervious cover(40%–70%),low-density impervious cover(10%–40%) and natural cover(0%–10%).The SPIS model performed better in estimating values for high-density urban areas than other categories.3) Multi-temporal SPIS mapping(1991–2016) was conducted based on the optimized SPIS results for 2005.After testing,AE ranges from 12.7% to 15.2%,RE ranges from 0.39 to 0.46,and r ranges from 0.81 to 0.86.It is demonstrated that the proposed approach for estimating sub-pixel level impervious surface by integrating the CART algorithm and multi-source remote sensing data is feasible and suitable for multi-temporal SPIS mapping of areas with distinct intra-annual variability in vegetation. 展开更多
关键词 impervious surface impervious surface percentage classification and regression tree(CART) sub-pixel sub-pixel impervious surface percentage(SPIS) time series
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部