Using the multi-temporal Landsat data and survey data of national resources, the authors studied the dynamics of cultivated land and landcover changes of typical ecological regions in China. The results of investigati...Using the multi-temporal Landsat data and survey data of national resources, the authors studied the dynamics of cultivated land and landcover changes of typical ecological regions in China. The results of investigation showed that the whole distribution of the cultivated land shifted to Northeast and Northwest China, and as a result, the ecological quality of cultivated land dropped down. The seacoast and cultivated land in the area of Yellow River Mouth expanded by an increasing rate of 0.73 kma-1, with a depositing rate of 2.1 kma-1. The desertification area of the dynamic of Horqin Sandy Land increased from 60.02% of the total land area in1970s to 64.82% in1980s but decreased to 54.90% in early 1990s. As to the change of North Tibet lakes, the water area of the Namu Lake decreased by 38.58 km2 from year 1970 to 1988, with a decreasing rate of 2.14 km2a-1.展开更多
Fuqing County of southeast China has witnessed significant land use changes during the last decade. Re mote sensing technology using multitemporal Landsat TM images was used to characterize land use types and to monit...Fuqing County of southeast China has witnessed significant land use changes during the last decade. Re mote sensing technology using multitemporal Landsat TM images was used to characterize land use types and to monitor land use changes in the county. Two TM scenes from 1991 and 1996 were used to cover the county and a five-year time period. Digital image processing was carried out for the remotely sensed data to produce classified images. The images were further processed using GIS software to generate GIS databases so that the data could be further spatially analyzed taking the advantages of the software. Land use change areas were determined by using the change detection technique. The comparison of the two classified TM images using the above technologies reveals that during the five study years, a large area of arable lands in the county has been lost and deforestation has taken place largely because of the dramatic in crease in built-up land and orchard. The conclusive statistical information is useful to understand the processes, causes and impacts of the land use changes in the county. The major driving force to the land use changes in the county ap peared to be the rapid economic development. The decision makers of the county have to pay more attention to the land use changes for the county’s sustainable development.展开更多
In order to analyze changes in human settlement in Xuzhou city during the past 20 years, changes in land cover and vegetation were investigated based on multi-temporal remote sensing Landsat TM images. We developed a ...In order to analyze changes in human settlement in Xuzhou city during the past 20 years, changes in land cover and vegetation were investigated based on multi-temporal remote sensing Landsat TM images. We developed a hierarchical classifier system that uses different feature inputs for specific classes and conducted a classification post-processing approach to improve its accuracy. From our statistical analysis of changes in urban land cover from 1987 to 2007, we conclude that built-up land areas have obviously increased, while farmland has seen in a continuous loss due to urban growth and human activities. A NDVI difference approach was used to extract information on changes in vegetation. A false change information elimination approach was developed based on prior knowledge and statistical analysis. The areas of vegetation cover have been in continuous decline over the past 20 years, although some measures have been adopted to protect and maintain urban vegetation. Given the stability of underground coal exploitation since 1990s, urban growth has become the major driving force in vegetation loss, which is different from the vegetation change driven by coal exploitation mainly before 1990.展开更多
By the use of the software of ARCGIS, dynamic changes of the landscape elements, landscape structure, conversion processes of the landscape gradients and the responses of wetland eco-security to land use/cover changes...By the use of the software of ARCGIS, dynamic changes of the landscape elements, landscape structure, conversion processes of the landscape gradients and the responses of wetland eco-security to land use/cover changes (LUCC) in the western Jilin Province were studied from 1930 to 2000. The results show that the landscape elements of grassland, wetland, forestland and water area shrank rapidly, and wetlands underwent huge losses in the study period due to the conversion from wetland into arable land and grassland in large quantities. The responses of wetland eco-security to LUCC were inverse evolvement of wetland vegetation, loss of biodiversity, water deficiency in wetland ecosystem, the changes of the heterogeneity of wetlands and the fragmentation of the wetland habitats. Suggestions were given for protection of wetlands and the regional sustainable development.展开更多
In recent years, land use/cover dynamic change has become a key subject that needs to be dealt with in the study of global environmental change. In this paper, remote sensing and geographic information systems (GIS) a...In recent years, land use/cover dynamic change has become a key subject that needs to be dealt with in the study of global environmental change. In this paper, remote sensing and geographic information systems (GIS) are integrated to monitor, map, and quantify the land use/cover change in the southern part of Iraq (Basrah Province was taken as a case) by using a 1:250 000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation, sand, urban area, unused land, and water bodies. Supervised classification and normalized difference build-up index (NDBI) were used respectively to retrieve its urban boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. Results showed that the urban area had increased by the rate of 1.2% per year, with area expansion from 3 299.1 km2 in 1990 to 3 794.9 km2 in 2003. Large vegetation area in the north and southeast were converted into urban construction land. The land use/cover changes of Basrah Province were mainly caused by rapid development of the urban economy and population immigration from the countryside. In addition, the former government policy of "returning farmland to transportation and huge expansion in military camps" was the major driving force for vegetation land change. The paper concludes that remote sensing and GIS can be used to create LULC maps. It also notes that the maps generated can be used to delineate the changes that take place over time.展开更多
基金National Natural Sci-ence Foundation of China (Grant No. 39900084) and KZCX1-10-07.
文摘Using the multi-temporal Landsat data and survey data of national resources, the authors studied the dynamics of cultivated land and landcover changes of typical ecological regions in China. The results of investigation showed that the whole distribution of the cultivated land shifted to Northeast and Northwest China, and as a result, the ecological quality of cultivated land dropped down. The seacoast and cultivated land in the area of Yellow River Mouth expanded by an increasing rate of 0.73 kma-1, with a depositing rate of 2.1 kma-1. The desertification area of the dynamic of Horqin Sandy Land increased from 60.02% of the total land area in1970s to 64.82% in1980s but decreased to 54.90% in early 1990s. As to the change of North Tibet lakes, the water area of the Namu Lake decreased by 38.58 km2 from year 1970 to 1988, with a decreasing rate of 2.14 km2a-1.
文摘Fuqing County of southeast China has witnessed significant land use changes during the last decade. Re mote sensing technology using multitemporal Landsat TM images was used to characterize land use types and to monitor land use changes in the county. Two TM scenes from 1991 and 1996 were used to cover the county and a five-year time period. Digital image processing was carried out for the remotely sensed data to produce classified images. The images were further processed using GIS software to generate GIS databases so that the data could be further spatially analyzed taking the advantages of the software. Land use change areas were determined by using the change detection technique. The comparison of the two classified TM images using the above technologies reveals that during the five study years, a large area of arable lands in the county has been lost and deforestation has taken place largely because of the dramatic in crease in built-up land and orchard. The conclusive statistical information is useful to understand the processes, causes and impacts of the land use changes in the county. The major driving force to the land use changes in the county ap peared to be the rapid economic development. The decision makers of the county have to pay more attention to the land use changes for the county’s sustainable development.
基金supported by the National High Technology Research and Developmemt Program of China (No2007AA12Z162)the Program for New Century Excellent Talents in University, Ministry of Education (NoNCET-06-0476)the Jiangsu Provincial 333 Engineering for High Level Talents(No.BK2006505)
文摘In order to analyze changes in human settlement in Xuzhou city during the past 20 years, changes in land cover and vegetation were investigated based on multi-temporal remote sensing Landsat TM images. We developed a hierarchical classifier system that uses different feature inputs for specific classes and conducted a classification post-processing approach to improve its accuracy. From our statistical analysis of changes in urban land cover from 1987 to 2007, we conclude that built-up land areas have obviously increased, while farmland has seen in a continuous loss due to urban growth and human activities. A NDVI difference approach was used to extract information on changes in vegetation. A false change information elimination approach was developed based on prior knowledge and statistical analysis. The areas of vegetation cover have been in continuous decline over the past 20 years, although some measures have been adopted to protect and maintain urban vegetation. Given the stability of underground coal exploitation since 1990s, urban growth has become the major driving force in vegetation loss, which is different from the vegetation change driven by coal exploitation mainly before 1990.
基金U nderthe auspices ofK now ledge Innovation Program ofC hinese A cadem y ofSciences (N o.K ZC X 2-308-3-5)
文摘By the use of the software of ARCGIS, dynamic changes of the landscape elements, landscape structure, conversion processes of the landscape gradients and the responses of wetland eco-security to land use/cover changes (LUCC) in the western Jilin Province were studied from 1930 to 2000. The results show that the landscape elements of grassland, wetland, forestland and water area shrank rapidly, and wetlands underwent huge losses in the study period due to the conversion from wetland into arable land and grassland in large quantities. The responses of wetland eco-security to LUCC were inverse evolvement of wetland vegetation, loss of biodiversity, water deficiency in wetland ecosystem, the changes of the heterogeneity of wetlands and the fragmentation of the wetland habitats. Suggestions were given for protection of wetlands and the regional sustainable development.
基金Supported by the Al-Basrah University, Iraq, the Geo-information Science and Technology Program ( No IRT 0438)China)
文摘In recent years, land use/cover dynamic change has become a key subject that needs to be dealt with in the study of global environmental change. In this paper, remote sensing and geographic information systems (GIS) are integrated to monitor, map, and quantify the land use/cover change in the southern part of Iraq (Basrah Province was taken as a case) by using a 1:250 000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation, sand, urban area, unused land, and water bodies. Supervised classification and normalized difference build-up index (NDBI) were used respectively to retrieve its urban boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. Results showed that the urban area had increased by the rate of 1.2% per year, with area expansion from 3 299.1 km2 in 1990 to 3 794.9 km2 in 2003. Large vegetation area in the north and southeast were converted into urban construction land. The land use/cover changes of Basrah Province were mainly caused by rapid development of the urban economy and population immigration from the countryside. In addition, the former government policy of "returning farmland to transportation and huge expansion in military camps" was the major driving force for vegetation land change. The paper concludes that remote sensing and GIS can be used to create LULC maps. It also notes that the maps generated can be used to delineate the changes that take place over time.