Remote Sensing image fusion is an effective way to use the large volume ofdata from multi-source images. This paper introduces a new method of remote sensing image fusionbased on support vector machine (SVM), using hi...Remote Sensing image fusion is an effective way to use the large volume ofdata from multi-source images. This paper introduces a new method of remote sensing image fusionbased on support vector machine (SVM), using high spatial resolution data SPIN-2 and multi-spectralremote sensing data SPOT-4. Firstly, the new method is established by building a model of remotesensing image fusion based on SVM. Then by using SPIN-2 data and SPOT-4 data, image classificationfusion is tested. Finally, an evaluation of the fusion result is made in two ways. 1) Fromsubjectivity assessment, the spatial resolution of the fused image is improved compared to theSPOT-4. And it is clearly that the texture of the fused image is distinctive. 2) From quantitativeanalysis, the effect of classification fusion is better. As a whole, the re-suit shows that theaccuracy of image fusion based on SVM is high and the SVM algorithm can be recommended forapplication in remote sensing image fusion processes.展开更多
There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge ...There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %展开更多
A bundle adjustment method of remote sensing images based on dual quaternion is presented,which conducted the uniform disposal corresponding location and attitude of sequence images by the dual quaternion.The constrai...A bundle adjustment method of remote sensing images based on dual quaternion is presented,which conducted the uniform disposal corresponding location and attitude of sequence images by the dual quaternion.The constraint relationship of image itself and sequence images is constructed to compensate the systematic errors.The feasibility of this method used in bundle adjustment is theoretically tested by the analysis of the structural characteristics of error equation and normal equation based on dual quaternion.Different distributions of control points and stepwise regression analysis are introduced into the experiment for RC30 image.The results show that the adjustment accuracy can achieve 0.2min plane and 1min elevation.As a result,this method provides a new technique for geometric location problem of remote sensing images.展开更多
This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is prop...This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is proposed, namely minimum distance constrained nonnegative matrix factoriza- tion (MDC-NMF). In this paper, firstly, a new regularization term, called endmember distance (ED) is considered, which is defined as the sum of the squared Euclidean distances from each end- member to their geometric center. Compared with the simplex volume, ED has better optimization properties and is conceptually intuitive. Secondly, a projected gradient (PG) scheme is adopted, and by the virtue of ED, in this scheme the optimal step size along the feasible descent direction can be calculated easily at each iteration. Thirdly, a finite step ( no more than the number of endmem- bers) terminated algorithm is used to project a point on the canonical simplex, by which the abun- dance nonnegative constraint and abundance sum-to-one constraint can be accurately satisfied in a light amount of computation. The experimental results, based on a set of synthetic data and real da- ta, demonstrate that, in the same running time, MDC-NMF outperforms several other similar meth- ods proposed recently.展开更多
The use of visible and infrared remote sensing images to calculate the water area is an effective means to grasp the basic situation of water resources,and water segmentation is the premise of statistics.Generally,the...The use of visible and infrared remote sensing images to calculate the water area is an effective means to grasp the basic situation of water resources,and water segmentation is the premise of statistics.Generally,the edge features of the water in the remote sensing images are complex.When the traditional morphology is used for image segmentation,it is easy to change the image edge and affect the accuracy of image segmentation because the fixed structuring elements are used to perform morphological operations on the image.To segment water in the remote sensing image accurately,a remote sensing image water segmentation method based on adaptive morphological elliptical structuring elements is proposed.Firstly,the eigenvalue and eigenvector of the image are estimated by linear structure tensor,and the elliptical structuring elements are constructed by the eigenvalue and eigenvector.Then adaptive morphological operations are defined,combining the close operation to eliminate the influence of dark detail noise on water without overstretching the water edge,so that the water edge can be maintained more accurately.Finally,on this basis,the water area can be segmented by gray slice.The experimental results show that the proposed method has higher segmentation accuracy and the average segmentation error is less than 1.43%.展开更多
文摘Remote Sensing image fusion is an effective way to use the large volume ofdata from multi-source images. This paper introduces a new method of remote sensing image fusionbased on support vector machine (SVM), using high spatial resolution data SPIN-2 and multi-spectralremote sensing data SPOT-4. Firstly, the new method is established by building a model of remotesensing image fusion based on SVM. Then by using SPIN-2 data and SPOT-4 data, image classificationfusion is tested. Finally, an evaluation of the fusion result is made in two ways. 1) Fromsubjectivity assessment, the spatial resolution of the fused image is improved compared to theSPOT-4. And it is clearly that the texture of the fused image is distinctive. 2) From quantitativeanalysis, the effect of classification fusion is better. As a whole, the re-suit shows that theaccuracy of image fusion based on SVM is high and the SVM algorithm can be recommended forapplication in remote sensing image fusion processes.
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)
文摘There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %
基金supported by the National Natural Science Foundations of China (Nos.41101441,60974107, 41471381)the Foundation of Graduate Innovation Center in NUAA(No.kfjj130133)
文摘A bundle adjustment method of remote sensing images based on dual quaternion is presented,which conducted the uniform disposal corresponding location and attitude of sequence images by the dual quaternion.The constraint relationship of image itself and sequence images is constructed to compensate the systematic errors.The feasibility of this method used in bundle adjustment is theoretically tested by the analysis of the structural characteristics of error equation and normal equation based on dual quaternion.Different distributions of control points and stepwise regression analysis are introduced into the experiment for RC30 image.The results show that the adjustment accuracy can achieve 0.2min plane and 1min elevation.As a result,this method provides a new technique for geometric location problem of remote sensing images.
基金Supported by the National Natural Science Foundation of China ( No. 60872083 ) and the National High Technology Research and Development Program of China (No. 2007AA12Z149).
文摘This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is proposed, namely minimum distance constrained nonnegative matrix factoriza- tion (MDC-NMF). In this paper, firstly, a new regularization term, called endmember distance (ED) is considered, which is defined as the sum of the squared Euclidean distances from each end- member to their geometric center. Compared with the simplex volume, ED has better optimization properties and is conceptually intuitive. Secondly, a projected gradient (PG) scheme is adopted, and by the virtue of ED, in this scheme the optimal step size along the feasible descent direction can be calculated easily at each iteration. Thirdly, a finite step ( no more than the number of endmem- bers) terminated algorithm is used to project a point on the canonical simplex, by which the abun- dance nonnegative constraint and abundance sum-to-one constraint can be accurately satisfied in a light amount of computation. The experimental results, based on a set of synthetic data and real da- ta, demonstrate that, in the same running time, MDC-NMF outperforms several other similar meth- ods proposed recently.
基金National Natural Science Foundation of China(No.61761027)Graduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)。
文摘The use of visible and infrared remote sensing images to calculate the water area is an effective means to grasp the basic situation of water resources,and water segmentation is the premise of statistics.Generally,the edge features of the water in the remote sensing images are complex.When the traditional morphology is used for image segmentation,it is easy to change the image edge and affect the accuracy of image segmentation because the fixed structuring elements are used to perform morphological operations on the image.To segment water in the remote sensing image accurately,a remote sensing image water segmentation method based on adaptive morphological elliptical structuring elements is proposed.Firstly,the eigenvalue and eigenvector of the image are estimated by linear structure tensor,and the elliptical structuring elements are constructed by the eigenvalue and eigenvector.Then adaptive morphological operations are defined,combining the close operation to eliminate the influence of dark detail noise on water without overstretching the water edge,so that the water edge can be maintained more accurately.Finally,on this basis,the water area can be segmented by gray slice.The experimental results show that the proposed method has higher segmentation accuracy and the average segmentation error is less than 1.43%.