Satellite remote sensing has become a primary data source for fire danger rating prediction, fuel and fire mapping, fire monitoring, and fire ecology research. This paper summarizes the research achievements in these ...Satellite remote sensing has become a primary data source for fire danger rating prediction, fuel and fire mapping, fire monitoring, and fire ecology research. This paper summarizes the research achievements in these research fields, and discusses the future trend in the use of satellite remote-sensing techniques in wildfire management. Fuel-type maps from remote-sensing data can now be produced at spatial and temporal scales quite adequate for operational fire management applications. US National Oceanic and Atmospheric Administration (NOAA) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellites are being used for fire detection worldwide due to their high temporal resolution and ability to detect fires in remote regions. Results can be quickly presented on many Websites providing a valuable service readily available to fire agency. As cost-effective tools, satellite remote-sensing techniques play an important role in fire mapping. Improved remote-sensing techniques have the potential to date older fire scars and provide estimates of burn severity. Satellite remote sensing is well suited to assessing the extent of biomass burning, a prerequisite for estimating emissions at regional and global scales, which are needed for better understanding the effects of fire on climate change. The types of satellites used in fire research are also discussed in the paper. Suggestions on what remote-sensing efforts should be completed in China to modernize fire management technology in this country are given.展开更多
With increasing urbanization and agricultural expansion, large tracts of wetlands have been either disturbed or converted to other uses. To protect wetlands, accurate distribution maps are needed. However, because of ...With increasing urbanization and agricultural expansion, large tracts of wetlands have been either disturbed or converted to other uses. To protect wetlands, accurate distribution maps are needed. However, because of the dramatic diversity of wetlands and difficulties in field work, wetland mapping on a large spatial scale is very difficult to do. Until recently there were only a few high resolution global wetland distribution datasets developed for wetland protection and restoration. In this paper, we used hydrologic and climatic variables in combination with Compound Topographic Index (CTI) data in modeling the average annual water table depth at 30 arc-second grids over the continental areas of the world except for Antarctica. The water table depth data were modeled without considering influences of anthropogenic activities. We adopted a relationship between poten- tial wetland distribution and water table depth to develop the global wetland suitability distribution dataset. The modeling re- suits showed that the total area of global wetland reached 3.316× 10^7 km^2. Remote-sensing-based validation based on a compi- lation of wetland areas from multiple sources indicates that the overall accuracy of our product is 83.7%. This result can be used as the basis for mapping the actual global wetland distribution. Because the modeling process did not account for the im- pact of anthropogenic water management such as irrigation and reservoir construction over suitable wetland areas, our result represents the upper bound of wetland areas when compared with some other global wetland datasets. Our method requires relatively fewer datasets and has a higher accuracy than a recently developed global wetland dataset.展开更多
基金北京市自然科学基金,国家重点基础研究发展计划(973计划),the fund of Forest Protection Laboratory, State Forestry Administration
文摘Satellite remote sensing has become a primary data source for fire danger rating prediction, fuel and fire mapping, fire monitoring, and fire ecology research. This paper summarizes the research achievements in these research fields, and discusses the future trend in the use of satellite remote-sensing techniques in wildfire management. Fuel-type maps from remote-sensing data can now be produced at spatial and temporal scales quite adequate for operational fire management applications. US National Oceanic and Atmospheric Administration (NOAA) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellites are being used for fire detection worldwide due to their high temporal resolution and ability to detect fires in remote regions. Results can be quickly presented on many Websites providing a valuable service readily available to fire agency. As cost-effective tools, satellite remote-sensing techniques play an important role in fire mapping. Improved remote-sensing techniques have the potential to date older fire scars and provide estimates of burn severity. Satellite remote sensing is well suited to assessing the extent of biomass burning, a prerequisite for estimating emissions at regional and global scales, which are needed for better understanding the effects of fire on climate change. The types of satellites used in fire research are also discussed in the paper. Suggestions on what remote-sensing efforts should be completed in China to modernize fire management technology in this country are given.
基金supported by National High-tech R&D Program of China (Grant No. 2009AA12200101)
文摘With increasing urbanization and agricultural expansion, large tracts of wetlands have been either disturbed or converted to other uses. To protect wetlands, accurate distribution maps are needed. However, because of the dramatic diversity of wetlands and difficulties in field work, wetland mapping on a large spatial scale is very difficult to do. Until recently there were only a few high resolution global wetland distribution datasets developed for wetland protection and restoration. In this paper, we used hydrologic and climatic variables in combination with Compound Topographic Index (CTI) data in modeling the average annual water table depth at 30 arc-second grids over the continental areas of the world except for Antarctica. The water table depth data were modeled without considering influences of anthropogenic activities. We adopted a relationship between poten- tial wetland distribution and water table depth to develop the global wetland suitability distribution dataset. The modeling re- suits showed that the total area of global wetland reached 3.316× 10^7 km^2. Remote-sensing-based validation based on a compi- lation of wetland areas from multiple sources indicates that the overall accuracy of our product is 83.7%. This result can be used as the basis for mapping the actual global wetland distribution. Because the modeling process did not account for the im- pact of anthropogenic water management such as irrigation and reservoir construction over suitable wetland areas, our result represents the upper bound of wetland areas when compared with some other global wetland datasets. Our method requires relatively fewer datasets and has a higher accuracy than a recently developed global wetland dataset.