Salt-affected soils classification using remotely sensed images is one of the most common applications in remote sensing,and many algorithms have been developed and applied for this purpose in the literature.This stud...Salt-affected soils classification using remotely sensed images is one of the most common applications in remote sensing,and many algorithms have been developed and applied for this purpose in the literature.This study takes the Delta Oasis of Weigan and Kuqa Rivers as a study area and discusses the prediction of soil salinization from ETM +Landsat data.It reports the Support Vector Machine(SVM) classification method based on Independent Component Analysis(ICA) and Texture features.Meanwhile,the letter introduces the fundamental theory of SVM algorithm and ICA,and then incorporates ICA and texture features.The classification result is compared with ICA-SVM classification,single data source SVM classification,maximum likelihood classification(MLC) and neural network classification qualitatively and quantitatively.The result shows that this method can effectively solve the problem of low accuracy and fracture classification result in single data source classification.It has high spread ability toward higher array input.The overall accuracy is 98.64%,which increases by10.2% compared with maximum likelihood classification,even increases by 12.94% compared with neural net classification,and thus acquires good effectiveness.Therefore,the classification method based on SVM and incorporating the ICA and texture features can be adapted to RS image classification and monitoring of soil salinization.展开更多
With rapid development of remote sensing technology, the resolution of remote sensing images is increasingly improved; then people can extract more useful data and information from these images. Thus, an important inf...With rapid development of remote sensing technology, the resolution of remote sensing images is increasingly improved; then people can extract more useful data and information from these images. Thus, an important information extraction method from remote sensing images - image classification, becomes more and more important. Based on phenopthase and band composition characteristics, this paper firstly discusses the important role of background parameters in remote sensing images classification; then based on geographical infomation system technology, the computerized automatic classification to high-medium-low-yield croplands in Dingxiang County of Shanxi Province in rotate sensing images has been carried out by using eompound layers classification method of multi-thematic information; compared the classification result to the visual interpretation results, the accuracy increases from 70% to above 90%.展开更多
基金Supported by the National Key Basic Research Development Pro-gram (2009CB421302 )National Natural Science Foundation ofChina (40861020,40961025,40901163)+1 种基金Natural Science Foun-dation of Xinjiang (200821128 )Open Foundation of State KeyLaboratory of Resources and Environment Information ystems(2010KF0003SA)
文摘Salt-affected soils classification using remotely sensed images is one of the most common applications in remote sensing,and many algorithms have been developed and applied for this purpose in the literature.This study takes the Delta Oasis of Weigan and Kuqa Rivers as a study area and discusses the prediction of soil salinization from ETM +Landsat data.It reports the Support Vector Machine(SVM) classification method based on Independent Component Analysis(ICA) and Texture features.Meanwhile,the letter introduces the fundamental theory of SVM algorithm and ICA,and then incorporates ICA and texture features.The classification result is compared with ICA-SVM classification,single data source SVM classification,maximum likelihood classification(MLC) and neural network classification qualitatively and quantitatively.The result shows that this method can effectively solve the problem of low accuracy and fracture classification result in single data source classification.It has high spread ability toward higher array input.The overall accuracy is 98.64%,which increases by10.2% compared with maximum likelihood classification,even increases by 12.94% compared with neural net classification,and thus acquires good effectiveness.Therefore,the classification method based on SVM and incorporating the ICA and texture features can be adapted to RS image classification and monitoring of soil salinization.
文摘With rapid development of remote sensing technology, the resolution of remote sensing images is increasingly improved; then people can extract more useful data and information from these images. Thus, an important information extraction method from remote sensing images - image classification, becomes more and more important. Based on phenopthase and band composition characteristics, this paper firstly discusses the important role of background parameters in remote sensing images classification; then based on geographical infomation system technology, the computerized automatic classification to high-medium-low-yield croplands in Dingxiang County of Shanxi Province in rotate sensing images has been carried out by using eompound layers classification method of multi-thematic information; compared the classification result to the visual interpretation results, the accuracy increases from 70% to above 90%.