Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional meth...Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.展开更多
Some techniques and methods for deriving water information from SPOT-4(XI) image were investigated and discussed in this paper. An algorithm of decision tree (DT) classification which includes several classifiers base...Some techniques and methods for deriving water information from SPOT-4(XI) image were investigated and discussed in this paper. An algorithm of decision tree (DT) classification which includes several classifiers based on the spectral responding characteristics of water bodies and other objects, was developed and put forward to delineate water bodies. Another algorithm of decision tree classification based on both spectral characteristics and auxiliary information of DEM and slope (DTDS) was also designed for water bodies extraction. In addition, supervised classification method of maximum likelyhood classification (MLC), and unsupervised method of interactive self organizing dada analysis technique (ISODATA) were used to extract waterbodies for comparison purpose. An index was designed and used to assess the accuracy of different methods adopted in the research. Results have shown that water extraction accuracy was variable with respect to the various techniques applied. It was low using ISODATA, very high using DT algorithm and much higher using both DTDS and MLC.展开更多
Based on the satellite remote sensing TM/ETM images of Xuzhou city, basic data about land use of the city from 1994 to 2000 are obtained with the neural network classification module of PCI software, and the dynamic c...Based on the satellite remote sensing TM/ETM images of Xuzhou city, basic data about land use of the city from 1994 to 2000 are obtained with the neural network classification module of PCI software, and the dynamic con- version matrix of land use is thus calculated. The areas of construction land and water body have increased by 1833.93 hm2 and 804.87 hm2, respectively. On the contrary, the area of cropland has decreased by 3207.24 hm2. The area of cropland converted into construction land makes up 26.84%, and that converted into water body amounts for 8.17% of the total area of cropland in 1994. The variation index of land use degree and the dynamic degree index of land use computed are 1.38 and 57.81%, respectively, which demonstrate that land use in Xuzhou is in a development period and the changes are drastic. The frequency index and importance index of the form in which cropland converted into con- struction land are 29.91% and 68.93% respectively. The results indicate that the change is not only widespread in space but a major form of spatial change of land use in the area.展开更多
The objective of this paper is to improve the monitoring speed and precision of fractional vegetation cover (fc). It mainly focuses on fc estimation when fcmax and fcmin are not approximately equal to 100% and 0%, res...The objective of this paper is to improve the monitoring speed and precision of fractional vegetation cover (fc). It mainly focuses on fc estimation when fcmax and fcmin are not approximately equal to 100% and 0%, respectively due to using remote sensing image with medium or low spatial resolution. Meanwhile, we present a new method of fc estimation based on a random set of fc maximum and minimum values from digital camera (DC) survey data and a di- midiate pixel model. The results show that this is a convenient, efficient and accurate method for fc monitoring, with the maximum error -0.172 and correlation coefficient of 0.974 between DC survey data and the estimated value of the remote sensing model. The remaining DC survey data can be used as verification data for the precision of the fc estimation. In general, the estimation of fc based on DC survey data and a remote sensing model is a brand-new development trend and deserves further extensive utilization.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40871241, 40771170)National High Technology Research and Development Program of China (No. 2007AA12Z176)
文摘Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.
文摘Some techniques and methods for deriving water information from SPOT-4(XI) image were investigated and discussed in this paper. An algorithm of decision tree (DT) classification which includes several classifiers based on the spectral responding characteristics of water bodies and other objects, was developed and put forward to delineate water bodies. Another algorithm of decision tree classification based on both spectral characteristics and auxiliary information of DEM and slope (DTDS) was also designed for water bodies extraction. In addition, supervised classification method of maximum likelyhood classification (MLC), and unsupervised method of interactive self organizing dada analysis technique (ISODATA) were used to extract waterbodies for comparison purpose. An index was designed and used to assess the accuracy of different methods adopted in the research. Results have shown that water extraction accuracy was variable with respect to the various techniques applied. It was low using ISODATA, very high using DT algorithm and much higher using both DTDS and MLC.
基金Projects 40401038 supported by National Natural Science Foundation of China, and 05KJB420133 by Natural Science Foundation for Colleges and Universities in Jiangsu Province
文摘Based on the satellite remote sensing TM/ETM images of Xuzhou city, basic data about land use of the city from 1994 to 2000 are obtained with the neural network classification module of PCI software, and the dynamic con- version matrix of land use is thus calculated. The areas of construction land and water body have increased by 1833.93 hm2 and 804.87 hm2, respectively. On the contrary, the area of cropland has decreased by 3207.24 hm2. The area of cropland converted into construction land makes up 26.84%, and that converted into water body amounts for 8.17% of the total area of cropland in 1994. The variation index of land use degree and the dynamic degree index of land use computed are 1.38 and 57.81%, respectively, which demonstrate that land use in Xuzhou is in a development period and the changes are drastic. The frequency index and importance index of the form in which cropland converted into con- struction land are 29.91% and 68.93% respectively. The results indicate that the change is not only widespread in space but a major form of spatial change of land use in the area.
基金Projects NCET-04-0484 supported by the New-Century Outstanding Young Scientist Program from the Ministry of Education and D0605046040191-101Beijing Science and Technology Program
文摘The objective of this paper is to improve the monitoring speed and precision of fractional vegetation cover (fc). It mainly focuses on fc estimation when fcmax and fcmin are not approximately equal to 100% and 0%, respectively due to using remote sensing image with medium or low spatial resolution. Meanwhile, we present a new method of fc estimation based on a random set of fc maximum and minimum values from digital camera (DC) survey data and a di- midiate pixel model. The results show that this is a convenient, efficient and accurate method for fc monitoring, with the maximum error -0.172 and correlation coefficient of 0.974 between DC survey data and the estimated value of the remote sensing model. The remaining DC survey data can be used as verification data for the precision of the fc estimation. In general, the estimation of fc based on DC survey data and a remote sensing model is a brand-new development trend and deserves further extensive utilization.