土壤水分对山区水文过程具有重要意义,遥感土壤水分产品能够长时间序列地提供山区流域的土壤水分空间分布数据,但分辨率较粗,无法直接应用,因此需要在山区进行降尺度研究.本文采用DISPATCH(disaggregation base on physical and theoret...土壤水分对山区水文过程具有重要意义,遥感土壤水分产品能够长时间序列地提供山区流域的土壤水分空间分布数据,但分辨率较粗,无法直接应用,因此需要在山区进行降尺度研究.本文采用DISPATCH(disaggregation base on physical and theoretical scale change)方法和多元回归方法对SMAP(soil moisture active passive)36 km×36 km遥感土壤水分产品进行降尺度,进而选取SMAP (9 km×9 km)的高精度遥感土壤水分产品和实测土壤水分数据,利用R(相关系数)、ERMS(均方根误差)和Ebias(偏差)指标评估降尺度结果.评估结果表明:由于2种降尺度方法的函数关系和反演过程存在差异,DISPATCH方法降尺度结果的数据趋势拟合效果较好,而多元回归方法降尺度结果的数据精度较好;在季节尺度对比中,不同季节山区温度和土壤水分的时空变化,导致多元回归方法降尺度效果春季最好,秋季次之,而夏季最差;DISPATCH方法降尺度效果秋季最好,夏季次之,而春季最差;亮温数据和SMAP表层土壤温度数据在山区的质量,导致2种方法降尺度结果的精度均比SMAP (9 km×9 km)产品好,但趋势拟合效果较差.展开更多
In this paper,we studied the effect of spatial distribution of soil parameters on passive soil moisture retrieval at pixel scale.First,we evaluated the forward microwave emission model and soil moisture retrieval algo...In this paper,we studied the effect of spatial distribution of soil parameters on passive soil moisture retrieval at pixel scale.First,we evaluated the forward microwave emission model and soil moisture retrieval algorithm accuracy through the observa-tion of field experiments.Then,we used soil parameters in different spatial distribution patterns,including random,normal,and uniform distribution,to determine the different levels of heterogeneity on soil moisture retrieval,in order to seek the rela-tionship between heterogeneity and soil moisture retrieval error.Finally,we conducted a controlled heterogeneity effect ex-periment measurements using a Truck-mounted Multi-frequency Radiometer(TMMR) to validate our simulation results.This work has proved that the soil moisture retrieval algorithm had a high accuracy(RMSE=0.049 cm3 cm 3) and can satisfy the need of this research.The simulation brightness temperatures match well with observations,with RMSE=9.89 K.At passive microwave remote sensing pixel scale,soil parameters with different spatial distribution patterns could have different levels of error on soil moisture estimation.Overall,we found that soil moisture with a random distribution in a satellite pixel scale can cause the largest error,with a normal distribution being the second,and a uniform distribution the least due to the smallest het-erogeneity.展开更多
Highly accurate observations at various scales on the land surface are urgently needed for the studies of many areas,such as hydrology,meteorology,and agriculture.With the rapid development of remote sensing technique...Highly accurate observations at various scales on the land surface are urgently needed for the studies of many areas,such as hydrology,meteorology,and agriculture.With the rapid development of remote sensing techniques,remote sensing has had the capacity of monitoring many factors of the Earth's land surface.Especially,the space-borne microwave remote sensing systems have been widely used in the quantitative monitoring of global snow,soil moisture,and vegetation parameters with their all-weather,all-time observation capabilities and their sensitivities to the characteristics of land surface factors.Based on the electromagnetic theories and microwave radiative transfer equations,researchers have achieved great successes in the microwave remote sensing studies for different sensors in recent years.This article has systematically reviewed the progresses on five research areas including microwave theoretical modeling,microwave inversion on soil moisture,snow,vegetation and land surface temperatures.Through the further enrichment of remote sensing datasets and the development of remote sensing theories and inversion techniques,remote sensing including microwave remote sensing will play a more important role in the studies and applications of the Earth systems.展开更多
Soil moisture plays an important role in land-atmosphere interactions. It is an important geophysical parameter in research on climate, hydrology, agriculture, and forestry. Soil moisture has important climatic effect...Soil moisture plays an important role in land-atmosphere interactions. It is an important geophysical parameter in research on climate, hydrology, agriculture, and forestry. Soil moisture has important climatic effects by influencing ground evapotranspi ration, runoff, surface reflectivity, surface emissivity, surface sensible heat and latent heat flux. At the global scale, the extent of its influence on the atmosphere is second only to that of sea surface temperature. At the terrestrial scale, its influence is even greater than that of sea surface temperatures. This paper presents a China Land Soil Moisture Data Assimilation System (CLSMDAS) based on EnKF and land process models, and results of the application of this system in the China Land Soil Moisture Data Assimilation tests. CLSMDAS is comprised of the following components: 1) A land process mo del—Community Land Model Version 3.0 (CLM3.0)—developed by the US National Center for Atmospheric Research (NCAR); 2) Precipitation of atmospheric forcing data and surface-incident solar radiation data come from hourly outputs of the FY2 geostationary meteorological satellite; 3) EnKF (Ensemble Kalman Filter) land data assimilation method; and 4) Observa tion data including satellite-inverted soil moisture outputs of the AMSR-E satellite and soil moisture observation data. Results of soil moisture assimilation tests from June to September 2006 were analyzed with CLSMDAS. Both simulation and assimila tion results of the land model reflected reasonably the temporal-spatial distribution of soil moisture. The assimilated soil mois ture distribution matches very well with severe summer droughts in Chongqing and Sichuan Province in August 2006, the worst since the foundation of the People’s Republic of China in 1949. It also matches drought regions that occurred in eastern Hubei and southern Guangxi in September.展开更多
文摘土壤水分对山区水文过程具有重要意义,遥感土壤水分产品能够长时间序列地提供山区流域的土壤水分空间分布数据,但分辨率较粗,无法直接应用,因此需要在山区进行降尺度研究.本文采用DISPATCH(disaggregation base on physical and theoretical scale change)方法和多元回归方法对SMAP(soil moisture active passive)36 km×36 km遥感土壤水分产品进行降尺度,进而选取SMAP (9 km×9 km)的高精度遥感土壤水分产品和实测土壤水分数据,利用R(相关系数)、ERMS(均方根误差)和Ebias(偏差)指标评估降尺度结果.评估结果表明:由于2种降尺度方法的函数关系和反演过程存在差异,DISPATCH方法降尺度结果的数据趋势拟合效果较好,而多元回归方法降尺度结果的数据精度较好;在季节尺度对比中,不同季节山区温度和土壤水分的时空变化,导致多元回归方法降尺度效果春季最好,秋季次之,而夏季最差;DISPATCH方法降尺度效果秋季最好,夏季次之,而春季最差;亮温数据和SMAP表层土壤温度数据在山区的质量,导致2种方法降尺度结果的精度均比SMAP (9 km×9 km)产品好,但趋势拟合效果较差.
基金supported by National Natural Science Foun-dation of China (Grant No.41030534)National Basic Research Program of China (Grant No. 2007CB714403)The European Commission Under FP7 Topic ENV.2007.4.1.4.2 "Improving Observing Systems for Water Resource Management"
文摘In this paper,we studied the effect of spatial distribution of soil parameters on passive soil moisture retrieval at pixel scale.First,we evaluated the forward microwave emission model and soil moisture retrieval algorithm accuracy through the observa-tion of field experiments.Then,we used soil parameters in different spatial distribution patterns,including random,normal,and uniform distribution,to determine the different levels of heterogeneity on soil moisture retrieval,in order to seek the rela-tionship between heterogeneity and soil moisture retrieval error.Finally,we conducted a controlled heterogeneity effect ex-periment measurements using a Truck-mounted Multi-frequency Radiometer(TMMR) to validate our simulation results.This work has proved that the soil moisture retrieval algorithm had a high accuracy(RMSE=0.049 cm3 cm 3) and can satisfy the need of this research.The simulation brightness temperatures match well with observations,with RMSE=9.89 K.At passive microwave remote sensing pixel scale,soil parameters with different spatial distribution patterns could have different levels of error on soil moisture estimation.Overall,we found that soil moisture with a random distribution in a satellite pixel scale can cause the largest error,with a normal distribution being the second,and a uniform distribution the least due to the smallest het-erogeneity.
基金supported by National Natural Science Foundation of China(Grant Nos. 40930530 and 40901180)
文摘Highly accurate observations at various scales on the land surface are urgently needed for the studies of many areas,such as hydrology,meteorology,and agriculture.With the rapid development of remote sensing techniques,remote sensing has had the capacity of monitoring many factors of the Earth's land surface.Especially,the space-borne microwave remote sensing systems have been widely used in the quantitative monitoring of global snow,soil moisture,and vegetation parameters with their all-weather,all-time observation capabilities and their sensitivities to the characteristics of land surface factors.Based on the electromagnetic theories and microwave radiative transfer equations,researchers have achieved great successes in the microwave remote sensing studies for different sensors in recent years.This article has systematically reviewed the progresses on five research areas including microwave theoretical modeling,microwave inversion on soil moisture,snow,vegetation and land surface temperatures.Through the further enrichment of remote sensing datasets and the development of remote sensing theories and inversion techniques,remote sensing including microwave remote sensing will play a more important role in the studies and applications of the Earth systems.
基金supported by National High Technology Research and Development Program of China (Grant Nos. 2007AA12Z144, 2009AA12Z129)Chinese COPES Project (Grant Nos. GYHY200706005, GYHY200806014)China Meteorological Administration New Technology Promotion Project (Grant No. CMATG2008Z04)
文摘Soil moisture plays an important role in land-atmosphere interactions. It is an important geophysical parameter in research on climate, hydrology, agriculture, and forestry. Soil moisture has important climatic effects by influencing ground evapotranspi ration, runoff, surface reflectivity, surface emissivity, surface sensible heat and latent heat flux. At the global scale, the extent of its influence on the atmosphere is second only to that of sea surface temperature. At the terrestrial scale, its influence is even greater than that of sea surface temperatures. This paper presents a China Land Soil Moisture Data Assimilation System (CLSMDAS) based on EnKF and land process models, and results of the application of this system in the China Land Soil Moisture Data Assimilation tests. CLSMDAS is comprised of the following components: 1) A land process mo del—Community Land Model Version 3.0 (CLM3.0)—developed by the US National Center for Atmospheric Research (NCAR); 2) Precipitation of atmospheric forcing data and surface-incident solar radiation data come from hourly outputs of the FY2 geostationary meteorological satellite; 3) EnKF (Ensemble Kalman Filter) land data assimilation method; and 4) Observa tion data including satellite-inverted soil moisture outputs of the AMSR-E satellite and soil moisture observation data. Results of soil moisture assimilation tests from June to September 2006 were analyzed with CLSMDAS. Both simulation and assimila tion results of the land model reflected reasonably the temporal-spatial distribution of soil moisture. The assimilated soil mois ture distribution matches very well with severe summer droughts in Chongqing and Sichuan Province in August 2006, the worst since the foundation of the People’s Republic of China in 1949. It also matches drought regions that occurred in eastern Hubei and southern Guangxi in September.