Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (...Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (GIS) techniques, the paper presents the results of a multitemporal satellite glacier extent mapping and glacier changes by glacier sizes in the Mt. Qomolangma region at the northern slopes of the middle Himalayas over the Tibetan Plateau. Glaciers in this region have both retreated and advanced in the past 35 years, with retreat dominating. The glacier retreat area was 3.23 km2 (or o.75 km^2 yr^-1 during 1974 and 1976, 8.68 km^2 (or 0.36 km^2 yr^-1 during 1976 and 1992, 1.44 km^2 (or 0.12 km^2 yr^-1) during 1992-2ooo. 1.14 km^2 (or 0.22 km^2 yr^-1 during 2000-2003, and 0.52 km^2 (or 0.07 km^2 yr^-1 during 2003-2008, respectively. While supra-glacier lakes on the debris-terminus of the Rongbuk Glacier were enlarged dramatically at the same time, from 0.05 km^2 in 1974 increased to 0.71 km^2 in 2008, which was more than 13 times larger in the last 35 years. In addition, glacier changes also showed spatial differences, for example, glacier retreat rate was the fastest at glacier termini between 5400 and 5700 m a.s.l than at other elevations. The result also shows that glaciers in the middle Himalayas retreat almost at a same pace with those in the western Himalayas.展开更多
In order to analyze changes in human settlement in Xuzhou city during the past 20 years, changes in land cover and vegetation were investigated based on multi-temporal remote sensing Landsat TM images. We developed a ...In order to analyze changes in human settlement in Xuzhou city during the past 20 years, changes in land cover and vegetation were investigated based on multi-temporal remote sensing Landsat TM images. We developed a hierarchical classifier system that uses different feature inputs for specific classes and conducted a classification post-processing approach to improve its accuracy. From our statistical analysis of changes in urban land cover from 1987 to 2007, we conclude that built-up land areas have obviously increased, while farmland has seen in a continuous loss due to urban growth and human activities. A NDVI difference approach was used to extract information on changes in vegetation. A false change information elimination approach was developed based on prior knowledge and statistical analysis. The areas of vegetation cover have been in continuous decline over the past 20 years, although some measures have been adopted to protect and maintain urban vegetation. Given the stability of underground coal exploitation since 1990s, urban growth has become the major driving force in vegetation loss, which is different from the vegetation change driven by coal exploitation mainly before 1990.展开更多
The occurrence of rice high-temperature damage (HTD) has increased with global warming. Cultivation of rice is seriously affected by the HTD in the middle and lower reaches of the Yangtze River, which directly affects...The occurrence of rice high-temperature damage (HTD) has increased with global warming. Cultivation of rice is seriously affected by the HTD in the middle and lower reaches of the Yangtze River, which directly affects food security in this region and in the whole of China. It is important to monitor and assess crop HTD using satellite remote sensing information. This paper reviews the recent development of monitoring rice HTD using optical remote sensing information. It includes the use of optical remote sensing information to obtain the regional spatial distribution of high temperatures, mixed-surface temperature retrieval for rice fields based on mixed decomposition information, the development of field and thermal infrared testing and modeling, and the satellite/ground-based remote sensing coupled method for monitoring rice HTD. Finally, the prospects for monitoring crop HTD based on remote sensing information are summarized.展开更多
基金supported by the National Natural Science Foundation of China (40601056, 40121101)the Special Funds for Major State Basic Research Project (2009CB723901)+4 种基金the Special Science Foundation on Meteorological Project Research for Public Benefit (GYHY(QX)2007-6-18)the Survey Project on Glacier resources and their changes in China (No.2006FY110200)the Opening Fund projects of State Key Laboratory of Remote Sensing Science in the Institute of Remote Sensing Applicationsthe innovative project of Institute of Tibetan Plateau Research (ITPR),CASthrough a cooperation project between the Climate Change Institute, University of Maine supported by the National Oceanic and Atmospheric Administration (NA04OAR4600179) and the Institute of Tibetan Plateau Research (ITPR), CAS
文摘Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (GIS) techniques, the paper presents the results of a multitemporal satellite glacier extent mapping and glacier changes by glacier sizes in the Mt. Qomolangma region at the northern slopes of the middle Himalayas over the Tibetan Plateau. Glaciers in this region have both retreated and advanced in the past 35 years, with retreat dominating. The glacier retreat area was 3.23 km2 (or o.75 km^2 yr^-1 during 1974 and 1976, 8.68 km^2 (or 0.36 km^2 yr^-1 during 1976 and 1992, 1.44 km^2 (or 0.12 km^2 yr^-1) during 1992-2ooo. 1.14 km^2 (or 0.22 km^2 yr^-1 during 2000-2003, and 0.52 km^2 (or 0.07 km^2 yr^-1 during 2003-2008, respectively. While supra-glacier lakes on the debris-terminus of the Rongbuk Glacier were enlarged dramatically at the same time, from 0.05 km^2 in 1974 increased to 0.71 km^2 in 2008, which was more than 13 times larger in the last 35 years. In addition, glacier changes also showed spatial differences, for example, glacier retreat rate was the fastest at glacier termini between 5400 and 5700 m a.s.l than at other elevations. The result also shows that glaciers in the middle Himalayas retreat almost at a same pace with those in the western Himalayas.
基金supported by the National High Technology Research and Developmemt Program of China (No2007AA12Z162)the Program for New Century Excellent Talents in University, Ministry of Education (NoNCET-06-0476)the Jiangsu Provincial 333 Engineering for High Level Talents(No.BK2006505)
文摘In order to analyze changes in human settlement in Xuzhou city during the past 20 years, changes in land cover and vegetation were investigated based on multi-temporal remote sensing Landsat TM images. We developed a hierarchical classifier system that uses different feature inputs for specific classes and conducted a classification post-processing approach to improve its accuracy. From our statistical analysis of changes in urban land cover from 1987 to 2007, we conclude that built-up land areas have obviously increased, while farmland has seen in a continuous loss due to urban growth and human activities. A NDVI difference approach was used to extract information on changes in vegetation. A false change information elimination approach was developed based on prior knowledge and statistical analysis. The areas of vegetation cover have been in continuous decline over the past 20 years, although some measures have been adopted to protect and maintain urban vegetation. Given the stability of underground coal exploitation since 1990s, urban growth has become the major driving force in vegetation loss, which is different from the vegetation change driven by coal exploitation mainly before 1990.
基金supported by the Global Change Key Research Project (Grant No. 2010CB951302)the Social Common Wealth Research Project (Grant No. GYHY201106027)+1 种基金the National Natural Science Foundation of China (Grant No. 40771147)the National Key Technology R&D Program of China (Grant No. 2006BAD04B04)
文摘The occurrence of rice high-temperature damage (HTD) has increased with global warming. Cultivation of rice is seriously affected by the HTD in the middle and lower reaches of the Yangtze River, which directly affects food security in this region and in the whole of China. It is important to monitor and assess crop HTD using satellite remote sensing information. This paper reviews the recent development of monitoring rice HTD using optical remote sensing information. It includes the use of optical remote sensing information to obtain the regional spatial distribution of high temperatures, mixed-surface temperature retrieval for rice fields based on mixed decomposition information, the development of field and thermal infrared testing and modeling, and the satellite/ground-based remote sensing coupled method for monitoring rice HTD. Finally, the prospects for monitoring crop HTD based on remote sensing information are summarized.