旋转目标检测是遥感图像处理领域中的重要任务,其存在的目标尺度变化大和目标方向任意等问题给自动目标检测带来了挑战。针对上述问题,提出了一种改进的RoI Transformer旋转目标检测框架:首先,利用RoI Transformer检测框架获取旋转的感...旋转目标检测是遥感图像处理领域中的重要任务,其存在的目标尺度变化大和目标方向任意等问题给自动目标检测带来了挑战。针对上述问题,提出了一种改进的RoI Transformer旋转目标检测框架:首先,利用RoI Transformer检测框架获取旋转的感兴趣区域特征(rotated region of interest,RRoI)用于鲁棒的几何特征提取;其次,在检测器中引入高分辨率网络(high-resolution network,HRNet)提取多分辨率特征图,在保持高分辨率特征同时适应目标的多尺度变化;最后,引入KLD(Kullback-Leibler divergence)损失,解决旋转目标表示的角度周期性的问题,提高检测方法对任意方向目标的适应性,并通过旋转目标边界框参数的联合优化提升目标定位精度。本文提出的旋转目标检测方法,即HRD-ROI Transformer(HRNet+KLD ROI Transformer),在DOTAv1.0和DIOR-R两个公开数据集上与典型的旋转目标检测方法进行了比较。结果显示:相比于传统的RoI Transformer检测框架,本文方法在DOTAv1.0和DIOR-R数据集上检测结果的mAP(mean-average-precision)分别提高了3.7%和4%。展开更多
遥感图像目标检测存在目标尺寸变化大、小目标排列密集、背景信息复杂等问题,针对这些问题,提出了端到端的遥感图像目标检测网络AMFI-RetinaNet(Attention and Multi-scale Feature Interactive-RetinaNet)来提高特征的判别能力。首先,...遥感图像目标检测存在目标尺寸变化大、小目标排列密集、背景信息复杂等问题,针对这些问题,提出了端到端的遥感图像目标检测网络AMFI-RetinaNet(Attention and Multi-scale Feature Interactive-RetinaNet)来提高特征的判别能力。首先,提出了卷积注意力来增强特征的空间信息,并结合通道注意力来增强特征的通道信息,该注意力模块位于特征提取网络的低层,能有效突出关键的细节特征,并提高网络对小目标的检测能力。此外,还提出了多尺度特征交互模板,通过相邻两层特征的交互,使低层特征信息流向高层,在特征金字塔结构后引入该模块,进一步提高了网络对多尺度目标的检测性能。在RSOD数据集和NWPU VHR-10数据集上进行实验,该方法比原RetinaNet网络的平均检测精度分别提升了2%和1.1%,实验结果表明提出的AMFI-RetinaNet网络可以更精确地对遥感图像目标进行检测和定位。展开更多
In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ...In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.展开更多
Remote sensing image object detection is one of the core tasks of remote sensing image processing.In recent years,with the development of deep learning,great progress has been made in object detection in remote sensin...Remote sensing image object detection is one of the core tasks of remote sensing image processing.In recent years,with the development of deep learning,great progress has been made in object detection in remote sensing.However,the problems of dense small targets,complex backgrounds and poor target positioning accuracy in remote sensing images make the detection of remote sensing targets still difficult.In order to solve these problems,this research proposes a remote sensing image object detection algorithm based on improved YOLOX-S.Firstly,the Efficient Channel Attention(ECA)module is introduced to improve the network's ability to extract features in the image and suppress useless information such as background;Secondly,the loss function is optimized to improve the regression accuracy of the target bounding box.We evaluate the effectiveness of our algorithm on the NWPU VHR-10 remote sensing image dataset,the experimental results show that the detection accuracy of the algorithm can reach 95.5%,without increasing the amount of parameters.It is significantly improved compared with that of the original YOLOX-S network,and the detection performance is much better than that of some other mainstream remote sensing image detection methods.Besides,our method also shows good generalization detection performance in experiments on aircraft images in the RSOD dataset.展开更多
The advanced data mining technologies and the large quantities of remotely sensed Imagery provide a data mining opportunity with high potential for useful results. Extracting interesting patterns and rules from data s...The advanced data mining technologies and the large quantities of remotely sensed Imagery provide a data mining opportunity with high potential for useful results. Extracting interesting patterns and rules from data sets composed of images and associated ground data can be of importance in object identification, community planning, resource discovery and other areas. In this paper, a data field is presented to express the observed spatial objects and conduct behavior mining on them. First, most of the important aspects are discussed on behavior mining and its implications for the future of data mining. Furthermore, an ideal framework of the behavior mining system is proposed in the network environment. Second, the model of behavior mining is given on the observed spatial objects, including the objects described by the first feature data field and the main feature data field by means of the potential function. Finally, a case study about object identification in public is given and analyzed. The experimental results show that the new model is feasible in behavior mining.展开更多
文摘旋转目标检测是遥感图像处理领域中的重要任务,其存在的目标尺度变化大和目标方向任意等问题给自动目标检测带来了挑战。针对上述问题,提出了一种改进的RoI Transformer旋转目标检测框架:首先,利用RoI Transformer检测框架获取旋转的感兴趣区域特征(rotated region of interest,RRoI)用于鲁棒的几何特征提取;其次,在检测器中引入高分辨率网络(high-resolution network,HRNet)提取多分辨率特征图,在保持高分辨率特征同时适应目标的多尺度变化;最后,引入KLD(Kullback-Leibler divergence)损失,解决旋转目标表示的角度周期性的问题,提高检测方法对任意方向目标的适应性,并通过旋转目标边界框参数的联合优化提升目标定位精度。本文提出的旋转目标检测方法,即HRD-ROI Transformer(HRNet+KLD ROI Transformer),在DOTAv1.0和DIOR-R两个公开数据集上与典型的旋转目标检测方法进行了比较。结果显示:相比于传统的RoI Transformer检测框架,本文方法在DOTAv1.0和DIOR-R数据集上检测结果的mAP(mean-average-precision)分别提高了3.7%和4%。
文摘In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.
基金Supported by the National Natural Science Foundation of China (72174172, 71774134)the Fundamental Research Funds for Central University,Southwest Minzu University (2022NYXXS094)。
文摘Remote sensing image object detection is one of the core tasks of remote sensing image processing.In recent years,with the development of deep learning,great progress has been made in object detection in remote sensing.However,the problems of dense small targets,complex backgrounds and poor target positioning accuracy in remote sensing images make the detection of remote sensing targets still difficult.In order to solve these problems,this research proposes a remote sensing image object detection algorithm based on improved YOLOX-S.Firstly,the Efficient Channel Attention(ECA)module is introduced to improve the network's ability to extract features in the image and suppress useless information such as background;Secondly,the loss function is optimized to improve the regression accuracy of the target bounding box.We evaluate the effectiveness of our algorithm on the NWPU VHR-10 remote sensing image dataset,the experimental results show that the detection accuracy of the algorithm can reach 95.5%,without increasing the amount of parameters.It is significantly improved compared with that of the original YOLOX-S network,and the detection performance is much better than that of some other mainstream remote sensing image detection methods.Besides,our method also shows good generalization detection performance in experiments on aircraft images in the RSOD dataset.
基金Supported by the National 973 Program of China(No.2006CB701305,No.2007CB310804)the National Natural Science Fundation of China(No.60743001)+1 种基金the Best National Thesis Fundation (No.2005047)the National New Century Excellent Talent Fundation (No.NCET-06-0618)
文摘The advanced data mining technologies and the large quantities of remotely sensed Imagery provide a data mining opportunity with high potential for useful results. Extracting interesting patterns and rules from data sets composed of images and associated ground data can be of importance in object identification, community planning, resource discovery and other areas. In this paper, a data field is presented to express the observed spatial objects and conduct behavior mining on them. First, most of the important aspects are discussed on behavior mining and its implications for the future of data mining. Furthermore, an ideal framework of the behavior mining system is proposed in the network environment. Second, the model of behavior mining is given on the observed spatial objects, including the objects described by the first feature data field and the main feature data field by means of the potential function. Finally, a case study about object identification in public is given and analyzed. The experimental results show that the new model is feasible in behavior mining.