Based on daily maximum temperature data from Chinese weather stations for the period 1960- 2013, the characteristics of the interdecadal variability of large-scale extreme hot event (EHE) frequency over the middle a...Based on daily maximum temperature data from Chinese weather stations for the period 1960- 2013, the characteristics of the interdecadal variability of large-scale extreme hot event (EHE) frequency over the middle and lower reaches of the Yangtze River basin (MLYR) are analyzed. It is found that the frequency of large-scale EHE over the MLYR experiences two significant interdecadal changes, around the early 1970s and early 2000s, having a more-less-more variability shape during the past half century. Furthermore, the EHE frequency interdecadal variability-related atmospheric circulation patterns are diagnosed. The results indicate the western Pacific subtropical high could not be the dominant atmospheric circulation associated with the interdecadal variability of the large-scale EHE frequency over the MLYR. In contrast, the dominant teleconnection pattern over the Eurasian continent, which is represented by the second empirical orthogonal function mode of the 200 hPa geopotential height, is closely related to the interdecadal variability of the EHE frequency over the MLYR. The results of this study deepen our understanding of the variability of the EHE frequency over the MLYR and its possible mechanism.展开更多
An unusually warm East Asia in spring 2018,when exceptionally high surface air temperatures were recorded in large areas of Asia,such as northern China,southern China,and Japan,was investigated based on the ERA-Interi...An unusually warm East Asia in spring 2018,when exceptionally high surface air temperatures were recorded in large areas of Asia,such as northern China,southern China,and Japan,was investigated based on the ERA-Interim reanalysis.The East Asian warming anomalies were primarily attributed to a tripole mode of North Atlantic SST anomalies,which could have triggered anomalous Rossby wave trains over the North Atlantic and Eurasia through modulating the North Atlantic baroclinic instability.Atlantic-forced Rossby waves tend to propagate eastward and induce anomalously high pressure and anticyclonic activity over East Asia,leading to a northward displacement of the Pacific subtropical high.As a result,descending motion,reduced precipitation,and increased surface solar radiation due to less cloud cover appear over East Asia,accompanied by remarkably warm advection from the ocean to southern China,northern China,and Japan.The transportation of anomalously warm advection and the feedbacks between soil moisture and surface temperature were both favorable for the recordbreaking warmth in East Asia during spring 2018.The seasonal‘memory’of the North Atlantic tripole SST mode from the previous winter to the following spring may provide useful implications for the seasonal prediction of East Asian weather and climate.展开更多
基金supported by the National Natural Science Foundation of China[grant number 41421004],[grant number41522503]the External Cooperation Program of the Bureau of International Co-operation,Chinese Academy of Sciences[grant number 134111KYSB20150016]
文摘Based on daily maximum temperature data from Chinese weather stations for the period 1960- 2013, the characteristics of the interdecadal variability of large-scale extreme hot event (EHE) frequency over the middle and lower reaches of the Yangtze River basin (MLYR) are analyzed. It is found that the frequency of large-scale EHE over the MLYR experiences two significant interdecadal changes, around the early 1970s and early 2000s, having a more-less-more variability shape during the past half century. Furthermore, the EHE frequency interdecadal variability-related atmospheric circulation patterns are diagnosed. The results indicate the western Pacific subtropical high could not be the dominant atmospheric circulation associated with the interdecadal variability of the large-scale EHE frequency over the MLYR. In contrast, the dominant teleconnection pattern over the Eurasian continent, which is represented by the second empirical orthogonal function mode of the 200 hPa geopotential height, is closely related to the interdecadal variability of the EHE frequency over the MLYR. The results of this study deepen our understanding of the variability of the EHE frequency over the MLYR and its possible mechanism.
基金supported by the National Key Research and Development Program of China [grant number2016YFA0602703]the National Natural Science Foundation of China [grant numbers 41661144019,41690123,41690120,and91637208]+1 种基金the CMA Guangzhou Joint Research Center for Atmospheric Sciencesthe Jiangsu Collaborative Innovation Center for Climate Change
文摘An unusually warm East Asia in spring 2018,when exceptionally high surface air temperatures were recorded in large areas of Asia,such as northern China,southern China,and Japan,was investigated based on the ERA-Interim reanalysis.The East Asian warming anomalies were primarily attributed to a tripole mode of North Atlantic SST anomalies,which could have triggered anomalous Rossby wave trains over the North Atlantic and Eurasia through modulating the North Atlantic baroclinic instability.Atlantic-forced Rossby waves tend to propagate eastward and induce anomalously high pressure and anticyclonic activity over East Asia,leading to a northward displacement of the Pacific subtropical high.As a result,descending motion,reduced precipitation,and increased surface solar radiation due to less cloud cover appear over East Asia,accompanied by remarkably warm advection from the ocean to southern China,northern China,and Japan.The transportation of anomalously warm advection and the feedbacks between soil moisture and surface temperature were both favorable for the recordbreaking warmth in East Asia during spring 2018.The seasonal‘memory’of the North Atlantic tripole SST mode from the previous winter to the following spring may provide useful implications for the seasonal prediction of East Asian weather and climate.