论文通过真实道路试验获得乘用车驾驶员特性试验数据,得到不同类型驾驶员跟车行为特性参数,提出了适应驾驶员特性的基于避撞时间TTC(Time to Collision)的报警算法,确定了报警-避撞启动逻辑,并且根据驾驶员异常行为的试验数据统计得到报...论文通过真实道路试验获得乘用车驾驶员特性试验数据,得到不同类型驾驶员跟车行为特性参数,提出了适应驾驶员特性的基于避撞时间TTC(Time to Collision)的报警算法,确定了报警-避撞启动逻辑,并且根据驾驶员异常行为的试验数据统计得到报警-避撞阈值。试验结果表明,所提出的追尾报警-避撞算法能够体现不同类型的驾驶员特性,有效提高汽车追尾报警-避撞系统的可接受性。展开更多
The braking behavior of drivers when a pedestrian comes out from the sidewalk to the road was analyzed using a driving simulator. Based on drivers' braking behavior, the braking control timing of the system for avoid...The braking behavior of drivers when a pedestrian comes out from the sidewalk to the road was analyzed using a driving simulator. Based on drivers' braking behavior, the braking control timing of the system for avoiding the collision with pedestrians was proposed. In this study, the subject drivers started braking at almost the same time in terms of TTC (Time to Collision), regardless of the velocity of a subject vehicle and crossing velocity of pedestrians. This experimental result showed that brake timing of the system which can minimize the interference for braking between drivers and the system is 1.3 s of TTC. Next, the drivers' braking behavior was investigated when the system controlled braking to avoid collision at this timing. As a result, drivers did not show any change of braking behavior with no excessive interference between braking control by the system and braking operation by drivers for avoiding collisions with pedestrians which is equivalent to the excessive dependence on the system.展开更多
文摘论文通过真实道路试验获得乘用车驾驶员特性试验数据,得到不同类型驾驶员跟车行为特性参数,提出了适应驾驶员特性的基于避撞时间TTC(Time to Collision)的报警算法,确定了报警-避撞启动逻辑,并且根据驾驶员异常行为的试验数据统计得到报警-避撞阈值。试验结果表明,所提出的追尾报警-避撞算法能够体现不同类型的驾驶员特性,有效提高汽车追尾报警-避撞系统的可接受性。
文摘The braking behavior of drivers when a pedestrian comes out from the sidewalk to the road was analyzed using a driving simulator. Based on drivers' braking behavior, the braking control timing of the system for avoiding the collision with pedestrians was proposed. In this study, the subject drivers started braking at almost the same time in terms of TTC (Time to Collision), regardless of the velocity of a subject vehicle and crossing velocity of pedestrians. This experimental result showed that brake timing of the system which can minimize the interference for braking between drivers and the system is 1.3 s of TTC. Next, the drivers' braking behavior was investigated when the system controlled braking to avoid collision at this timing. As a result, drivers did not show any change of braking behavior with no excessive interference between braking control by the system and braking operation by drivers for avoiding collisions with pedestrians which is equivalent to the excessive dependence on the system.