期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于邻加矩阵的严格最佳光正交码的构造方法研究
1
作者 李琦 史小菊 +1 位作者 高军萍 王霞 《河北工业大学学报》 CAS 北大核心 2011年第4期1-4,共4页
在区组设计和邻加理论基础上,给出了光正交码与邻加矩阵的关系.提出了一种基于邻加矩阵构造严格最佳光正交码的方法.采用该方法可以提高仿真效率、节省码长,并达到Johnson界的容量限.这对构造严格最佳光正交码具有一定的实际意义.
关键词 光码分多址 严格最佳光正交码 邻加矩阵 自相关 互相关
下载PDF
NOTE ON REGULAR D-OPTIMAL MATRICES
2
作者 LI QIAOLIANG Department of Mathematics, Hunan Normal University, Changsha 410081, China. Center for Combinatorics, Nankai University, Tianjin 300071, China. E-mail: liqiaoliang@eyou.com 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2003年第2期215-220,共6页
Let A be a j x d (0,1) matrix. It is known that if j = 2k - 1 is odd, then det(AAT) ≤ (j+1)((j+1)d/4j)j; if j is even, then det(AAT) ≤ (j+1)((j+2)d/4(j+1))j. A is called a regular D-optimal matrix if it satisfies th... Let A be a j x d (0,1) matrix. It is known that if j = 2k - 1 is odd, then det(AAT) ≤ (j+1)((j+1)d/4j)j; if j is even, then det(AAT) ≤ (j+1)((j+2)d/4(j+1))j. A is called a regular D-optimal matrix if it satisfies the equality of the above bounds. In this note, it is proved that if j = 2k - 1 is odd, then A is a regular D-optimal matrix if and only if A is the adjacent matrix of a (2k - 1, k, (j + l)d/4j)-BIBD; if j = 2k is even, then A is a regular D-optimal matrix if and only if A can be obtained from the adjacent matrix B of a (2k + 1,k + 1,(j + 2)d/4(j +1))-BIBD by deleting any one row from B. Three 21 x 42 regular D-optimal matrices, which were unknown in [11], are also provided. 展开更多
关键词 Regular .D-optimal matrices SIMPLEX Weighing design
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部