期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
面向线性光谱混合分解的邻域像元集螺线型构建方法
1
作者 刘博宇 陈军 +2 位作者 邢华桥 武昊 张俊 《测绘学报》 EI CSCD 北大核心 2017年第11期1841-1849,共9页
高时间分辨率遥感影像在地表景观破碎区域易形成混合像元,难以发挥其高时间维度优势。现有方式多是基于线性光谱混合模型,借助邻域像元所构成的像元集合组成线性方程组,求出组分光谱值的最小二乘解,提高其空间分辨率。然而,现有方法依... 高时间分辨率遥感影像在地表景观破碎区域易形成混合像元,难以发挥其高时间维度优势。现有方式多是基于线性光谱混合模型,借助邻域像元所构成的像元集合组成线性方程组,求出组分光谱值的最小二乘解,提高其空间分辨率。然而,现有方法依赖窗口形式来构建邻域像元集合,在某些区域易造成方程组无解的欠定问题。本文在分析其问题原因的基础上,引入阿基米德螺线代替传统的矩形窗口,对邻域各像元依次遍历,构建空间邻近、组分相近的邻域像元集合来解决该问题。在GlobeLand 30数据上的试验表明,螺线型构建方法对5种混合尺度上多种类型地物均具有稳定的精度,与传统窗口构建方法相比,可从构建邻域像元集合方面将总体理论精度提高2%,分解结果精度提高近1个数量级。 展开更多
关键词 线性光谱混合分解 混合像元 邻域像元 螺线 窗口
下载PDF
顾及邻域像元分类决策的遥感影像分类蚁群算法 被引量:3
2
作者 罗海燕 廖芳 +1 位作者 郑文武 邓运员 《测绘地理信息》 2016年第6期35-39,61,共6页
为了进一步发掘蚁群算法的应用潜力,提高分类精度,将相关性引入分类规则发掘过程,试图在蚁群算法挖掘规则时既考虑像元的光谱信息,又兼顾邻近像元灰度的空间相关性,提出了一种优化的蚁群算法。算法包括对单个像元的分类规则挖掘和顾及... 为了进一步发掘蚁群算法的应用潜力,提高分类精度,将相关性引入分类规则发掘过程,试图在蚁群算法挖掘规则时既考虑像元的光谱信息,又兼顾邻近像元灰度的空间相关性,提出了一种优化的蚁群算法。算法包括对单个像元的分类规则挖掘和顾及邻域像元相关性的分类规则挖掘,单个像元的分类规则挖掘中,为使信息素缓和增加,避免陷入局部最优解,同时保证算法具有适当的收敛速度,采用自适应方案调整参数。顾及邻域像元相关性的分类规则挖掘中选用了优势类、优势度、类熵和邻域类相关性等4个指标,以反映邻域相关性对分类结果的影响。实验研究发现,顾及邻域蚁群算法的分类结果精度有了较为明显的提高,总体精度提高了3.00%,其优势主要体现在对建设用地、裸地等复杂地物的识别。研究结果表明,顾及邻域蚁群算法能够更准确地提取光谱信息复杂的地物,有效地减弱同物异谱和异物同谱现象的干扰。 展开更多
关键词 遥感影像分类 蚁群规则挖掘 蚁群算法 邻域像元
原文传递
基于双边滤波和空间邻域信息的高光谱图像分类方法 被引量:7
3
作者 廖建尚 王立国 郝思媛 《农业机械学报》 EI CAS CSCD 北大核心 2017年第8期140-146,211,共8页
提出了一种基于双边滤波和像元邻域信息的高光谱图像分类(BS-SVM)算法。该方法首先利用双边滤波器提取经主成分分析降维后的高光谱图像空间纹理信息,然后通过设计一种高光谱像元邻域信息来构建高光谱的空间相关信息,最后将2种空间信息... 提出了一种基于双边滤波和像元邻域信息的高光谱图像分类(BS-SVM)算法。该方法首先利用双边滤波器提取经主成分分析降维后的高光谱图像空间纹理信息,然后通过设计一种高光谱像元邻域信息来构建高光谱的空间相关信息,最后将2种空间信息融合后与光谱信息结合,形成空谱信息(空间信息和光谱信息)后交由支持向量机完成分类。实验结果表明,相比单纯使用光谱信息的支持向量机的分类方法以及基于Gabor滤波的空谱信息结合分类方法,所提出的BS-SVM方法分类精度有较大幅度提高,充分证明了该方法的有效性。 展开更多
关键词 高光谱图像 分类 双边滤波 像元邻域信息 空间相关信息
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部