期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多头注意力机制的社交网络符号预测
被引量:
2
1
作者
颜仕雄
朱焱
李春平
《计算机应用研究》
CSCD
北大核心
2021年第5期1360-1364,共5页
传统符号预测方法缺少处理二阶邻居信息的能力,难以有效提取社交网络用户的低维特征。为了有效融合节点用户邻居信息,提出了一种利用多头注意力机制学习一阶、二阶邻居信息的网络表示学习方法(signed multi-head graph attention networ...
传统符号预测方法缺少处理二阶邻居信息的能力,难以有效提取社交网络用户的低维特征。为了有效融合节点用户邻居信息,提出了一种利用多头注意力机制学习一阶、二阶邻居信息的网络表示学习方法(signed multi-head graph attention network,SMGAT),从而改善社交网络符号预测的效果。首先融合平衡理论和状态理论采样一阶邻居、二阶邻居;然后利用多头注意力机制融合邻居的符号和结构信息,学习节点的低维特征;最后通过逻辑回归分类器实现符号预测。通过在四个真实的符号网络数据集上进行实验,结果证明SMGAT方法能够有效挖掘邻居节点的符号和结构信息,提高社交网络符号预测效果。
展开更多
关键词
符号网络
网络表示学习
多头注意力机制
邻居采样
下载PDF
职称材料
题名
基于多头注意力机制的社交网络符号预测
被引量:
2
1
作者
颜仕雄
朱焱
李春平
机构
西南交通大学信息科学与技术学院
清华大学软件学院
出处
《计算机应用研究》
CSCD
北大核心
2021年第5期1360-1364,共5页
基金
四川省科技计划项目(2019YFSY0032)。
文摘
传统符号预测方法缺少处理二阶邻居信息的能力,难以有效提取社交网络用户的低维特征。为了有效融合节点用户邻居信息,提出了一种利用多头注意力机制学习一阶、二阶邻居信息的网络表示学习方法(signed multi-head graph attention network,SMGAT),从而改善社交网络符号预测的效果。首先融合平衡理论和状态理论采样一阶邻居、二阶邻居;然后利用多头注意力机制融合邻居的符号和结构信息,学习节点的低维特征;最后通过逻辑回归分类器实现符号预测。通过在四个真实的符号网络数据集上进行实验,结果证明SMGAT方法能够有效挖掘邻居节点的符号和结构信息,提高社交网络符号预测效果。
关键词
符号网络
网络表示学习
多头注意力机制
邻居采样
Keywords
signed network
network representation learning
multi-head attention mechanism
neighbor sampling
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多头注意力机制的社交网络符号预测
颜仕雄
朱焱
李春平
《计算机应用研究》
CSCD
北大核心
2021
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部