对简单图G(V,E),若存在自然数κ(1≤κ≤Δ(G))和映射f:E(G)→{1,2,…,κ}使得对任意相邻两点u,v∈V(G),uv∈E(G),当d(u)=d(v)时,有C(u)=C(u),则f为G的κ-邻点可约边染色(简记为κ-AVREC of G),而x′_(aur)(G)=max{κ|κ-AVREC of G}称...对简单图G(V,E),若存在自然数κ(1≤κ≤Δ(G))和映射f:E(G)→{1,2,…,κ}使得对任意相邻两点u,v∈V(G),uv∈E(G),当d(u)=d(v)时,有C(u)=C(u),则f为G的κ-邻点可约边染色(简记为κ-AVREC of G),而x′_(aur)(G)=max{κ|κ-AVREC of G}称为G的邻点可约边染色数.其中C(u)={f(uv)|uv∈E(G)}.证明了联图在若干情况下的邻点可约边染色定理,得到了S_n+S_n,F_n+F_n,W_n+W_n,S_n+F_n,S_n+W_n和F_n+W_n的邻点可约边色数.展开更多
文摘对简单图G(V,E),若存在自然数κ(1≤κ≤Δ(G))和映射f:E(G)→{1,2,…,κ}使得对任意相邻两点u,v∈V(G),uv∈E(G),当d(u)=d(v)时,有C(u)=C(u),则f为G的κ-邻点可约边染色(简记为κ-AVREC of G),而x′_(aur)(G)=max{κ|κ-AVREC of G}称为G的邻点可约边染色数.其中C(u)={f(uv)|uv∈E(G)}.证明了联图在若干情况下的邻点可约边染色定理,得到了S_n+S_n,F_n+F_n,W_n+W_n,S_n+F_n,S_n+W_n和F_n+W_n的邻点可约边色数.