期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
改进的邻近加权合成过采样技术
1
作者 邢胜 王晓兰 +3 位作者 沈家星 朱美玲 曹永青 何玉林 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第6期748-755,共8页
针对邻近加权合成过采样技术(proximity weighted synthetic oversampling technique,ProWSyn)在合成样例时未删除噪声样例,且当平滑因子在[0,1]区间取值时,权重比例难以覆盖整个搜索空间的缺陷,提出一种改进的邻近加权合成过采样技术(i... 针对邻近加权合成过采样技术(proximity weighted synthetic oversampling technique,ProWSyn)在合成样例时未删除噪声样例,且当平滑因子在[0,1]区间取值时,权重比例难以覆盖整个搜索空间的缺陷,提出一种改进的邻近加权合成过采样技术(improved proximity weighted synthetic oversampling technique,IProWSyn).改变权重的计算策略,引入底数为(0,1]的普通指数函数,通过动态改变底数令权重覆盖更大范围的搜索空间,进而找到更优的权重.将IProWSyn、ASN-SMOTE和ProWSyn应用在非平衡数据集ada、ecoli1、glass1、haberman、Pima和yeast1上,再使用k近邻(k-nearest neighbors,kNN)分类器和神经网络分类器检验方法的有效性.实验结果表明,在多数数据集上IProWSyn的F1、几何平均值(geometric mean,G-mean)和曲线下面积(area under curve,AUC)指标性能都高于其他过采样方法.IProWSyn过采样技术在这些数据集的综合分类效果更好,有更好的泛化表现. 展开更多
关键词 人工智能 非平衡数据 邻近加权合成过采样技术 过采样方法 K近邻分类器 神经网络
下载PDF
基于KNN和自适应的过采样方法
2
作者 张怀啸 陈卓 周必良 《信息与电脑》 2023年第3期93-95,共3页
针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN... 针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN and Adaptive,KAO)。首先,利用KNN去除噪声样本;其次,根据少数类样本K近邻样本中多数类样本数,自适应给少数类样本分配过采样权重;最后,利用新的插值方式生成新样本平衡数据集。在KEEL公开的数据集上进行实验,将提出的KAO算法与SMOTE及其改进算法进行对比,在F1值和g-mean上都有所提升。 展开更多
关键词 不平衡数据分类 少数类合成过采样技术(SMOTE) K最邻近算法(KNN) 自适应 过采样
下载PDF
结合缠论和深度学习的股价拐点预测研究 被引量:2
3
作者 田红丽 杨莹莹 闫会强 《计算机工程与应用》 CSCD 北大核心 2022年第16期319-325,共7页
针对股市存在伪分型且分型数据集的类别样本不平衡问题,提出了一种结合缠论和深度学习的拐点预测方法(SMOTE-FLCN-WSVM)。在缠论的基础上,对数据集进行拐点的标注。深度学习模型从数据、特征以及分类算法三个层面对不平衡问题进行改进... 针对股市存在伪分型且分型数据集的类别样本不平衡问题,提出了一种结合缠论和深度学习的拐点预测方法(SMOTE-FLCN-WSVM)。在缠论的基础上,对数据集进行拐点的标注。深度学习模型从数据、特征以及分类算法三个层面对不平衡问题进行改进。首先采用SMOTE过采样算法对数据集进行预处理;再针对不平衡数据集特征提取困难的问题,使用引入Focal Loss的卷积神经网络挖掘数据的深层特征;然后利用引入类别权重参数的支持向量机对提取的特征进行分类。实验从实用性与有效性出发,选择绝对收益、相对收益与准确率对模型进行对比实验与收益评估。实验结果表明,所提模型具有可行性与实际应用价值。 展开更多
关键词 缠论 合成少数类过采样技术(SMOTE) 焦点损失函数 卷积神经网络(CNN) 加权支持向量机(WSVM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部