针对化工过程数据中包含噪声和强非线性的特点,提出了基于小波去噪核主元分析(De-noised Kernel Principal Component Analysis,DKPCA)和邻近支持向量机(Proximal Support Vector Machine,PSVM)的性能监控和故障诊断新方法.将样本数据...针对化工过程数据中包含噪声和强非线性的特点,提出了基于小波去噪核主元分析(De-noised Kernel Principal Component Analysis,DKPCA)和邻近支持向量机(Proximal Support Vector Machine,PSVM)的性能监控和故障诊断新方法.将样本数据用小波方法进行去噪处理,去除数据所包含的噪声,通过KPCA将降噪后的数据进行变换,在特征空间里构建T2和Q统计量来监测是否有故障发生;若发生故障,则计算数据的非线性主元得分向量,并将其作为PSVM的输入值,通过PSVM分类来确定故障的具体类型.流化催化裂化装置(FCCU)仿真试验验证了小波去噪的必要性和利用DKPCA-PSVM进行监控和故障诊断的有效性.展开更多
针对标准支持向量回归波束形成器的计算复杂度高、内存开销大、训练速度慢的缺点,提出了邻近支持向量机(Proximal Support Vector Machine,PSVM)波束优化方法。PSVM打破了通过对偶问题求解原问题的传统思维,将支持向量回归的约束条件等...针对标准支持向量回归波束形成器的计算复杂度高、内存开销大、训练速度慢的缺点,提出了邻近支持向量机(Proximal Support Vector Machine,PSVM)波束优化方法。PSVM打破了通过对偶问题求解原问题的传统思维,将支持向量回归的约束条件等式化,直接对原问题进行分析与求解,给出了基于PSVM波束形成器的优化模型及具体实现过程,并进行了数值仿真实验。研究结果表明,在保持波束形成器性能基本不变的情况下,降低了计算复杂度,减少了内存开销,提高了训练速度。与传统的支持向量回归波束形成相比,具有良好的快速性,为波束形成器的优化设计提供了一种新的有效方法。展开更多
We integrate k-Nearest Neighbors(kNN) into Support Vector Machine(SVM) and create a new method called SVM-kNN.SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM ...We integrate k-Nearest Neighbors(kNN) into Support Vector Machine(SVM) and create a new method called SVM-kNN.SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM and improve the forecast accuracy.In addition,it can give the prediction probability of any quasar candidate through counting the nearest neighbors of that candidate which is produced by kNN.Applying photometric data of stars and quasars with spectral classification from SDSS DR7 and considering limiting magnitude error is less than 0.1,SVM-kNN and SVM reach much higher performance that all the classification metrics of quasar selection are above 97.0%.Apparently,the performance of SVM-kNN has slighter improvement than that of SVM.Therefore SVM-kNN is such a competitive and promising approach that can be used to construct the targeting catalogue of quasar candidates for large sky surveys.展开更多
文摘针对化工过程数据中包含噪声和强非线性的特点,提出了基于小波去噪核主元分析(De-noised Kernel Principal Component Analysis,DKPCA)和邻近支持向量机(Proximal Support Vector Machine,PSVM)的性能监控和故障诊断新方法.将样本数据用小波方法进行去噪处理,去除数据所包含的噪声,通过KPCA将降噪后的数据进行变换,在特征空间里构建T2和Q统计量来监测是否有故障发生;若发生故障,则计算数据的非线性主元得分向量,并将其作为PSVM的输入值,通过PSVM分类来确定故障的具体类型.流化催化裂化装置(FCCU)仿真试验验证了小波去噪的必要性和利用DKPCA-PSVM进行监控和故障诊断的有效性.
文摘针对标准支持向量回归波束形成器的计算复杂度高、内存开销大、训练速度慢的缺点,提出了邻近支持向量机(Proximal Support Vector Machine,PSVM)波束优化方法。PSVM打破了通过对偶问题求解原问题的传统思维,将支持向量回归的约束条件等式化,直接对原问题进行分析与求解,给出了基于PSVM波束形成器的优化模型及具体实现过程,并进行了数值仿真实验。研究结果表明,在保持波束形成器性能基本不变的情况下,降低了计算复杂度,减少了内存开销,提高了训练速度。与传统的支持向量回归波束形成相比,具有良好的快速性,为波束形成器的优化设计提供了一种新的有效方法。
基金supported by the National Natural Science Foundation of China(Grant Nos.10778724,11178021 and 11033001)the Natural Science Foundation of Education Department of Hebei Province (Grant No.ZD2010127)the Young Researcher Grant of National Astronomical Observatories,Chinese Academy of Sciences
文摘We integrate k-Nearest Neighbors(kNN) into Support Vector Machine(SVM) and create a new method called SVM-kNN.SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM and improve the forecast accuracy.In addition,it can give the prediction probability of any quasar candidate through counting the nearest neighbors of that candidate which is produced by kNN.Applying photometric data of stars and quasars with spectral classification from SDSS DR7 and considering limiting magnitude error is less than 0.1,SVM-kNN and SVM reach much higher performance that all the classification metrics of quasar selection are above 97.0%.Apparently,the performance of SVM-kNN has slighter improvement than that of SVM.Therefore SVM-kNN is such a competitive and promising approach that can be used to construct the targeting catalogue of quasar candidates for large sky surveys.