期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于分层解码和渐进融合的快速显著性目标检测
1
作者
杨爱萍
王子麒
+1 位作者
程思萌
刘彦
《天津大学学报(自然科学与工程技术版)》
EI
CAS
CSCD
北大核心
2024年第7期721-728,共8页
现有显著性目标检测方法大多只关心模型的检测精度,容易忽略模型的编解码效率,导致网络运行速度较慢.针对上述问题,本文提出一种基于分层解码和渐进融合的快速显著性目标检测网络,并分别设计语义提取模块、空间增强模块和边界提取模块,...
现有显著性目标检测方法大多只关心模型的检测精度,容易忽略模型的编解码效率,导致网络运行速度较慢.针对上述问题,本文提出一种基于分层解码和渐进融合的快速显著性目标检测网络,并分别设计语义提取模块、空间增强模块和边界提取模块,对编码器提取到的多尺度特征进行分层筛选和高效解码.其中,语义提取模块可准确定位显著性目标的整体区域,空间增强模块可完整保留显著性目标的空域信息,边界提取模块可增强显著性目标的边界轮廓.由于不同层级特征的感受野和分辨率不同,本文设计了邻间聚合模块和边界细化模块,对筛选后的特征进行渐进式融合并逐步细化得到最后的显著性预测图.实验结果表明,所提方法不仅能够得到边界清晰、区域完整的显著性预测图,还能显著提升模型的编解码效率,快速检测显著性目标,在ECSSD和HKU-IS数据集上的最大值F max分别为0.947和0.936,优于其他方法.
展开更多
关键词
显著性目标检测
分层解码
渐进融合
邻间聚合
边界细化
下载PDF
职称材料
题名
基于分层解码和渐进融合的快速显著性目标检测
1
作者
杨爱萍
王子麒
程思萌
刘彦
机构
天津大学电气自动化与信息工程学院
出处
《天津大学学报(自然科学与工程技术版)》
EI
CAS
CSCD
北大核心
2024年第7期721-728,共8页
基金
国家自然科学基金资助项目(62071323)
国家重点研发计划资助项目(2022ZD0160400).
文摘
现有显著性目标检测方法大多只关心模型的检测精度,容易忽略模型的编解码效率,导致网络运行速度较慢.针对上述问题,本文提出一种基于分层解码和渐进融合的快速显著性目标检测网络,并分别设计语义提取模块、空间增强模块和边界提取模块,对编码器提取到的多尺度特征进行分层筛选和高效解码.其中,语义提取模块可准确定位显著性目标的整体区域,空间增强模块可完整保留显著性目标的空域信息,边界提取模块可增强显著性目标的边界轮廓.由于不同层级特征的感受野和分辨率不同,本文设计了邻间聚合模块和边界细化模块,对筛选后的特征进行渐进式融合并逐步细化得到最后的显著性预测图.实验结果表明,所提方法不仅能够得到边界清晰、区域完整的显著性预测图,还能显著提升模型的编解码效率,快速检测显著性目标,在ECSSD和HKU-IS数据集上的最大值F max分别为0.947和0.936,优于其他方法.
关键词
显著性目标检测
分层解码
渐进融合
邻间聚合
边界细化
Keywords
salient object detection
hierarchical decoder
progressive integration
neighborhood aggregation
boundary refinement
分类号
TK448.21 [动力工程及工程热物理—动力机械及工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于分层解码和渐进融合的快速显著性目标检测
杨爱萍
王子麒
程思萌
刘彦
《天津大学学报(自然科学与工程技术版)》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部