To obtain good trade-offs between complexity and performance onpeak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM)using partial transmitting sequence (PTS) schemes, a trel...To obtain good trade-offs between complexity and performance onpeak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM)using partial transmitting sequence (PTS) schemes, a trellis structure based PTS factor searchmethod is proposed. The trellis search is with a variant constraint length L_C, 1 ≤ L_C ≤ V-1,where V is the number of PTS subblocks. The method is to decide a PTS factor by searching all thepossible paths obtained by varying L_C consecutive factors. The trellis search can be viewed as ageneral PTS factor search model. If L_C = V-1, it is a full search, and if L_C = 1, it is aniterative search. Using different constraint lengths, trellis factor search PTS exhibits differentPAPR reduction performances. A larger L_C results in a better performance and L_C = V-1 results inthe optimum. However, a larger L_C requires more computation. This helps to choose a good trade-offbetween complexity and performance.展开更多
In order to exploit the capability of the peak-to-average power ratio(PAPR)reduction afforded by the partial transmit sequences (PTS)approach in orthogonal frequency division multiplexing(OFDM)systems, subblock ...In order to exploit the capability of the peak-to-average power ratio(PAPR)reduction afforded by the partial transmit sequences (PTS)approach in orthogonal frequency division multiplexing(OFDM)systems, subblock partition schemes for the PTS approach are studied. The motivation is to establish the relationship between the subblock partition and the capability of PAPR reduction through the periodic autocorrelation functions (ACFs)of partial transmit sequences and the periodic cross-correlation functions(CCFs)of signal candidates.Let Q represent the variation of the square magnitudes of ACFs.It is found that the lower the Q-value is, the better PAPR performance can be achieved, which is introduced as a design criterion for subblock partition.Based on this criterion, four common partition methods are compared and an efficient partition strategy is proposed. It is shown that structured partition schemes with low computational complexity have a large Q-value, leading to a poor PAPR performance.The new strategy can be regarded as a trade-off between PAPR performance and computational complexity.The simulation results show that the strategy can achieve an optimal performance with a relatively low complexity and, moreover,does not increase the amount of side information.展开更多
Because the partial transmit sequence(PTS) peak-to-average power ratio(PAPR) reduction technology for optical orthogonal frequency division multiplexing(O-OFDM) systems has higher computational complexity, a novel two...Because the partial transmit sequence(PTS) peak-to-average power ratio(PAPR) reduction technology for optical orthogonal frequency division multiplexing(O-OFDM) systems has higher computational complexity, a novel two-stage enhanced-iterative-algorithm PTS(TS-EIA-PTS) PAPR reduction algorithm with lower computational complexity is proposed in this paper. The simulation results show that the proposed TS-EIA-PTS PAPR reduction algorithm can reduce the computational complexity by 18.47% in the condition of the original signal sequence partitioned into 4 sub-blocks at the remaining stage of n-d=5. Furthermore, it has almost the same PAPR reduction performance and the same bit error rate(BER) performance as the EIA-PTS algorithm, and with the increase of the subcarrier number, the computational complexity can be further reduced. As a result, the proposed TS-EIA-PTS PAPR reduction algorithm is more suitable for the practical O-OFDM systems.展开更多
文摘To obtain good trade-offs between complexity and performance onpeak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM)using partial transmitting sequence (PTS) schemes, a trellis structure based PTS factor searchmethod is proposed. The trellis search is with a variant constraint length L_C, 1 ≤ L_C ≤ V-1,where V is the number of PTS subblocks. The method is to decide a PTS factor by searching all thepossible paths obtained by varying L_C consecutive factors. The trellis search can be viewed as ageneral PTS factor search model. If L_C = V-1, it is a full search, and if L_C = 1, it is aniterative search. Using different constraint lengths, trellis factor search PTS exhibits differentPAPR reduction performances. A larger L_C results in a better performance and L_C = V-1 results inthe optimum. However, a larger L_C requires more computation. This helps to choose a good trade-offbetween complexity and performance.
文摘In order to exploit the capability of the peak-to-average power ratio(PAPR)reduction afforded by the partial transmit sequences (PTS)approach in orthogonal frequency division multiplexing(OFDM)systems, subblock partition schemes for the PTS approach are studied. The motivation is to establish the relationship between the subblock partition and the capability of PAPR reduction through the periodic autocorrelation functions (ACFs)of partial transmit sequences and the periodic cross-correlation functions(CCFs)of signal candidates.Let Q represent the variation of the square magnitudes of ACFs.It is found that the lower the Q-value is, the better PAPR performance can be achieved, which is introduced as a design criterion for subblock partition.Based on this criterion, four common partition methods are compared and an efficient partition strategy is proposed. It is shown that structured partition schemes with low computational complexity have a large Q-value, leading to a poor PAPR performance.The new strategy can be regarded as a trade-off between PAPR performance and computational complexity.The simulation results show that the strategy can achieve an optimal performance with a relatively low complexity and, moreover,does not increase the amount of side information.
基金supported by the National Natural Science Foundation of China(Nos.61472464 and 61471075)the Program for Innovation Team Building at Institutions of Higher Education in Chongqing(No.J2013-46)+1 种基金the Natural Science Foundation of Chongqing Science and Technology Commission(Nos.cstc2015jcyj A0554 and cstc2013jcyj A40017)the Program for Postgraduate Science Research and Innovation of Chongqing University of Posts and Telecommunications(Chongqing Municipal Education Commission)(No.CYS14144)
文摘Because the partial transmit sequence(PTS) peak-to-average power ratio(PAPR) reduction technology for optical orthogonal frequency division multiplexing(O-OFDM) systems has higher computational complexity, a novel two-stage enhanced-iterative-algorithm PTS(TS-EIA-PTS) PAPR reduction algorithm with lower computational complexity is proposed in this paper. The simulation results show that the proposed TS-EIA-PTS PAPR reduction algorithm can reduce the computational complexity by 18.47% in the condition of the original signal sequence partitioned into 4 sub-blocks at the remaining stage of n-d=5. Furthermore, it has almost the same PAPR reduction performance and the same bit error rate(BER) performance as the EIA-PTS algorithm, and with the increase of the subcarrier number, the computational complexity can be further reduced. As a result, the proposed TS-EIA-PTS PAPR reduction algorithm is more suitable for the practical O-OFDM systems.