部分变量误差模型(partial EIV model)的加权整体最小二乘(weighted total least-squares,WTLS)估计不具备抵御粗差的能力。鉴于粗差可能同时出现在观测值和系数矩阵中,本文在提出部分变量误差模型WTLS估计的两步迭代解法的基础上,运用...部分变量误差模型(partial EIV model)的加权整体最小二乘(weighted total least-squares,WTLS)估计不具备抵御粗差的能力。鉴于粗差可能同时出现在观测值和系数矩阵中,本文在提出部分变量误差模型WTLS估计的两步迭代解法的基础上,运用抗差M估计的等价权方法,发展了一种整体抗差最小二乘(TRLS)估计方法,并采用一致最大功效统计量确定降权因子。针对WTLS估计两步迭代解法的特点,设计了两个不同的降权方案:第1个方案是在估计系数矩阵元素时,不对观测值降权,仅对系数矩阵降权;第2个方案是在估计系数矩阵元素时,既对系数矩阵降权,同时也对观测值降权。通过对模拟2D仿射变换和线性拟合实例进行计算和分析,结果表明第1方案优于第2方案,并且优于基于残差和验后单位权方差的抗差估计和现有的变量误差模型抗差估计。展开更多
文摘部分变量误差模型(partial EIV model)的加权整体最小二乘(weighted total least-squares,WTLS)估计不具备抵御粗差的能力。鉴于粗差可能同时出现在观测值和系数矩阵中,本文在提出部分变量误差模型WTLS估计的两步迭代解法的基础上,运用抗差M估计的等价权方法,发展了一种整体抗差最小二乘(TRLS)估计方法,并采用一致最大功效统计量确定降权因子。针对WTLS估计两步迭代解法的特点,设计了两个不同的降权方案:第1个方案是在估计系数矩阵元素时,不对观测值降权,仅对系数矩阵降权;第2个方案是在估计系数矩阵元素时,既对系数矩阵降权,同时也对观测值降权。通过对模拟2D仿射变换和线性拟合实例进行计算和分析,结果表明第1方案优于第2方案,并且优于基于残差和验后单位权方差的抗差估计和现有的变量误差模型抗差估计。