2219-T8 aluminum alloys were butt welded by the double-pass tungsten inert gas (TIG) arc welding process. The transverse tensile test of the joint showed that the fracture mainly occurred in the partially melted zo...2219-T8 aluminum alloys were butt welded by the double-pass tungsten inert gas (TIG) arc welding process. The transverse tensile test of the joint showed that the fracture mainly occurred in the partially melted zone (PMZ). Effects of the PMZ on the fracture behavior were systematically studied. Continuous intergranular eutectics were observed in the PMZ close to the fusion line. Away from the fusion line, the intergranular eutectics in the PMZ became discontinuous. The fracture morphology and the microhardness distribution of the joint showed that the PMZ was gradient material with different mechanical properties, which strongly affected the fracture process. It was observed that the crack initiated in the PMZ near the front weld toe, and propagated in the PMZ away from the fusion line. Then, the crack tip was blunt when it propagated into the PMZ with higher plasticity. Finally, the rest part of the joint was shear fractured.展开更多
In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the coolin...In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the cooling effect provided by internal reforming of methane in anode gas channel. A model mixture consisting of 80% n-hexadecane and 20%..!-methylnaphthalin is used to simulate the commercial diesel. The modelling consists of several steps. First, equilibrium gas composition at the exit of CPOX reformer is modelled in terms oxygen to car- bon (O/C) ratio, fuel utilization ratio and anode gas recirculation. Second, product composition, especially methane content, is determined for the me.th.an, ation process at the operating temperatures ra:ng!ng from 500 ℃to 520 ℃.Finally, the cooling power provided by internal reforming of methane in SOFC fuel channel is calculated for two concepts to increase the methane content of the diesel reformate. The results show that the first concept, operating the diesel reformer at low O/C ratio and/or, recirculation rat!o, is not realizable due to high probability of coke formation, whereas the second concept, combining a methanation process with CPOX, can provide a significant cool- ing effect in addition to the conventional c?oling concept which needs higher levels of excess air.展开更多
Though several theoretical models have been proposed to design electronic flat-bands, the definite experimental realization in two-dimensional atomic crystal is still lacking. Here we propose a novel and realistic fla...Though several theoretical models have been proposed to design electronic flat-bands, the definite experimental realization in two-dimensional atomic crystal is still lacking. Here we propose a novel and realistic flat-band model based on threefold degenerate p-orbitals in two-dimensional ionic materials. Our theoretical analysis and first-principles calculations show that the proposed flat-band can be realized in 1 T layered materials of alkali-metal chalogenides and metal-carbon group compounds. Some of the former are theoretically predicted to be stable as layered materials(e.g., K2 S), and some of the latter have been experimentally fabricated in previous works(e.g., Gd2 CCl2). More interestingly, the flat-band is partially filled in the heterostructure of a K2 S monolayer and graphene layers. The spin polarized nearly flatband can be realized in the ferromagnetic state of a Gd2 CCl2 monolayer, which has been fabricated in experiments. Our theoretical model together with the material predictions provide a realistic platform for the study of flat-bands and related exotic quantum phases.展开更多
文摘2219-T8 aluminum alloys were butt welded by the double-pass tungsten inert gas (TIG) arc welding process. The transverse tensile test of the joint showed that the fracture mainly occurred in the partially melted zone (PMZ). Effects of the PMZ on the fracture behavior were systematically studied. Continuous intergranular eutectics were observed in the PMZ close to the fusion line. Away from the fusion line, the intergranular eutectics in the PMZ became discontinuous. The fracture morphology and the microhardness distribution of the joint showed that the PMZ was gradient material with different mechanical properties, which strongly affected the fracture process. It was observed that the crack initiated in the PMZ near the front weld toe, and propagated in the PMZ away from the fusion line. Then, the crack tip was blunt when it propagated into the PMZ with higher plasticity. Finally, the rest part of the joint was shear fractured.
基金Supported by the Ministry of the Environment, Climate Protection and the Energy Sector, Baden-Wuettermberg
文摘In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the cooling effect provided by internal reforming of methane in anode gas channel. A model mixture consisting of 80% n-hexadecane and 20%..!-methylnaphthalin is used to simulate the commercial diesel. The modelling consists of several steps. First, equilibrium gas composition at the exit of CPOX reformer is modelled in terms oxygen to car- bon (O/C) ratio, fuel utilization ratio and anode gas recirculation. Second, product composition, especially methane content, is determined for the me.th.an, ation process at the operating temperatures ra:ng!ng from 500 ℃to 520 ℃.Finally, the cooling power provided by internal reforming of methane in SOFC fuel channel is calculated for two concepts to increase the methane content of the diesel reformate. The results show that the first concept, operating the diesel reformer at low O/C ratio and/or, recirculation rat!o, is not realizable due to high probability of coke formation, whereas the second concept, combining a methanation process with CPOX, can provide a significant cool- ing effect in addition to the conventional c?oling concept which needs higher levels of excess air.
基金supported by the National Basic Research Program of China(2015CB921102 and 2019YFA0308403)the National Natural Science Foundation of China(11674028 and11822407)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)China Postdoctoral Science Foundation(2020M670011)。
文摘Though several theoretical models have been proposed to design electronic flat-bands, the definite experimental realization in two-dimensional atomic crystal is still lacking. Here we propose a novel and realistic flat-band model based on threefold degenerate p-orbitals in two-dimensional ionic materials. Our theoretical analysis and first-principles calculations show that the proposed flat-band can be realized in 1 T layered materials of alkali-metal chalogenides and metal-carbon group compounds. Some of the former are theoretically predicted to be stable as layered materials(e.g., K2 S), and some of the latter have been experimentally fabricated in previous works(e.g., Gd2 CCl2). More interestingly, the flat-band is partially filled in the heterostructure of a K2 S monolayer and graphene layers. The spin polarized nearly flatband can be realized in the ferromagnetic state of a Gd2 CCl2 monolayer, which has been fabricated in experiments. Our theoretical model together with the material predictions provide a realistic platform for the study of flat-bands and related exotic quantum phases.