期刊文献+
共找到284篇文章
< 1 2 15 >
每页显示 20 50 100
一种添加部分自适应噪声的集成经验模态分解方法
1
作者 李昊 陈强 徐一雄 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期227-234,共8页
为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效... 为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效调整信号的极值点分布,提出添加部分自适应噪声的集成经验模态分解(EEMDPAN)。相比于自适应噪声完全集成经验模态分解(CEEMDAN),EEMDPAN有2点改进:不使用全部独立的自适应噪声,而使用成对相加为0的互补自适应噪声;不添加全部阶的自适应噪声,而是在中间的某一阶停止,而后使用经典EMD方法。对2个人工信号进行分解,实验证明,EEMDPAN很好地继承了EEMD抑制模态混叠的能力,相比于CEEMDAN,计算量降低至1/3,并且分解结果的低阶成分信号附加噪声更小,高阶成分信号可信度更高。 展开更多
关键词 自适应噪声 集成经验模态分解 白噪声 内涵模态函数 互补噪声 附加噪声 信号可信度
下载PDF
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型
2
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 多模型 Stacking融合
下载PDF
基于集成经验模态分解与集成机器学习的锂离子电池剩余使用寿命预测方法 被引量:5
3
作者 张朝龙 赵筛筛 何怡刚 《电力系统保护与控制》 EI CSCD 北大核心 2023年第13期177-186,共10页
准确预测储能锂离子电池剩余使用寿命(remaining useful life,RUL)对于电力系统的安全性与可靠性至关重要。针对锂离子电池老化轨迹呈现非线性变化的问题,提出一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)和... 准确预测储能锂离子电池剩余使用寿命(remaining useful life,RUL)对于电力系统的安全性与可靠性至关重要。针对锂离子电池老化轨迹呈现非线性变化的问题,提出一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)和集成机器学习的锂离子电池剩余使用寿命预测方法。首先,利用集成经验模态分解算法分解锂离子电池老化数据。其次,分别利用集成的长短时记忆神经网络与相关向量机对分解得到的残差数据序列和本征模态数据序列建模预测。最后,融合预测的残差数据序列和本征模态数据序列,综合计算锂离子电池未来寿命老化轨迹。采用储能锂离子电池老化数据进行验证,结果显示所提出的锂离子电池RUL预测方法具有更好的鲁棒性与非线性跟踪能力。 展开更多
关键词 锂离子电池 剩余使用寿命预测 集成经验模态分解 相关向量机算法 长短时记忆神经网络
下载PDF
基于改进集成经验模态分解和高斯过程回归的锂离子电池剩余容量及寿命预测方法 被引量:4
4
作者 向铭 何怡刚 张慧 《电测与仪表》 北大核心 2023年第9期27-33,共7页
锂离子电池在储能电站中为消纳可再生能源作出了重要贡献,其运行的稳定性和可靠性受到了研究人员的持续关注。为了解决锂离子电池容量及剩余寿命的预测和抑制测量过程中因各种外界因素引起的噪声,提出了一种基于改进的集成经验模态分解M... 锂离子电池在储能电站中为消纳可再生能源作出了重要贡献,其运行的稳定性和可靠性受到了研究人员的持续关注。为了解决锂离子电池容量及剩余寿命的预测和抑制测量过程中因各种外界因素引起的噪声,提出了一种基于改进的集成经验模态分解MEEMD(Modified Ensemble Empirical Mode Decomposition)去噪和经贝叶斯优化的高斯过程回归BO-GPR(Gaussian process regression optimized by Bayesian optimization algorithm)的锂离子电池容量及剩余寿命预测方法。利用MEEMD方法识别并去除原始测量数据中的噪声分量。利用BO-GPR方法预测锂离子电池容量及剩余寿命,其中贝叶斯优化方法对高斯过程回归的部分超参数进行了进一步寻优。文章基于美国国家航空航天局研究中心提供的锂离子电池测量数据进行了预测实验,结果表明,该方法能够有效去除噪声信号,选取的协方差函数和超参数组合达成的预测效果优于初始GPR模型,证明了其有效性。 展开更多
关键词 锂离子电池 容量及剩余寿命 改进的集成经验模态分解 高斯过程回归 贝叶斯优化
下载PDF
基于密度聚类模态分解的卷积神经网络和长短期记忆网络短期风电功率预测
5
作者 崔明勇 董文韬 卢志刚 《现代电力》 北大核心 2024年第4期631-641,共11页
近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition wi... 近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和卷积神经网络与长短期记忆网络结合的短期风电功率预测方法。首先,利用密度聚类将风电功率与天气特征分成不同类别的数据集,通过自适应噪声完备集成经验模态分解算法将不同类别的数据进行频域分解得到子序列分量。以此为基础,将不同的子序列分量与天气特征进行特征选择,输入到卷积神经网络与长短期记忆网络的预测模型。最后,将不同的预测结果进行叠加得到最终的预测结果。整个预测过程通过聚类、分解和特征选择,有效提高了短期风电功率预测的准确度。 展开更多
关键词 风电功率预测 密度聚类 自适应噪声完备集成经验模态分解 卷积神经网络 长短期记忆网络
下载PDF
集成经验模态分解中加入白噪声的自适应准则 被引量:25
6
作者 蔡艳平 李艾华 +2 位作者 徐斌 许平 何艳萍 《振动.测试与诊断》 EI CSCD 北大核心 2011年第6期709-714,811,共6页
现有集成经验模态分解(ensemble empirical mode decomposition,简称EEMD)算法中加入白噪声的大小与集成的次数都需要人为按照经验设定,缺乏可靠性。针对此问题,提出了自适应集成经验模态分解(adaptive ensemble empirical mode decompo... 现有集成经验模态分解(ensemble empirical mode decomposition,简称EEMD)算法中加入白噪声的大小与集成的次数都需要人为按照经验设定,缺乏可靠性。针对此问题,提出了自适应集成经验模态分解(adaptive ensemble empirical mode decomposition,简称AEEMD)算法,并给出了一种在EEMD方法中有效加入白噪声的可依据准则。首先,计算出输入信号的幅值标准差;然后,采用高通滤波方法对输入信号进行分解,通过计算高通滤波分解后的高频分量幅值标准差和输入信号幅值标准差来确定加入白噪声的幅值标准差,在此基础之上,EEMD集成次数根据期望的信号分解相对误差和加入白噪声的幅值标准差惟一确定;最后,为了进一步提高相邻模态函数的正交性,对AEEMD分解结果进行二次处理。仿真试验验证了AEEMD方法的抗混分解能力,将AEEMD方法应用于转子油膜涡动的故障监测诊断中,提取出转子油膜涡动的故障特征,并与基本EMD算法进行了对比,结果表明,AEEMD更加精确地提取了油膜涡动信号的故障特征。 展开更多
关键词 旋转机械 故障诊断 集成经验模态分解 模态混叠
下载PDF
基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法 被引量:197
7
作者 胡爱军 马万里 唐贵基 《中国电机工程学报》 EI CSCD 北大核心 2012年第11期106-111,153,共6页
为实现滚动轴承故障的精确诊断,提出一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)与峭度准则的包络解调方法。该方法首先利用EEMD将振动信号分解,然后利用峭度最大准则选取EEMD分解后的本征模函数(intrinsic ... 为实现滚动轴承故障的精确诊断,提出一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)与峭度准则的包络解调方法。该方法首先利用EEMD将振动信号分解,然后利用峭度最大准则选取EEMD分解后的本征模函数(intrinsic mode function,IMF),将该本征模函数进行包络解调从而获得滚动轴承的故障特征信息。该方法可以有效抑制经验模态分解(empirical mode decomposition,EMD)中的模态混叠问题,同时还避免了共振解调方法中中心频率及滤波频带的选取,具有良好的自适应性。利用该包络解调方法对实际滚动轴承发生内圈、外圈故障进行了分析,证明了该方法可以有效地提取滚动轴承故障特征信息,能够实现滚动轴承故障的精确诊断。 展开更多
关键词 集成经验模态分解 峭度 滚动轴承 包络解调 故障诊断
下载PDF
自适应噪声均值优选集成经验模态分解及其在滚动轴承故障诊断中的应用 被引量:6
8
作者 童靳于 苏缪涎 +3 位作者 郑近德 潘海洋 潘紫微 包家汉 《电子测量与仪器学报》 CSCD 北大核心 2021年第2期41-49,共9页
为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集... 为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集成经验模态分解(mean-optimized ensemble empirical mode decomposition with adaptive noise, MEEMDAN)。MEEMDAN在迭代筛分过程中引入不同的权重,以正交性指标最小为依据,从不同权重下的分解结果中选取最优模态函数(IMF),确保了每一阶的IMF分量都是整体最优。通过仿真分析验证了MEEMDAN方法在分解能力和分解精度方面优于CEEMDAN方法。同时,将MEEMDAN和最大相关峭度反褶积相结合,并应用于滚动轴承仿真数据和实测数据分析,结果表明,与现有方法相比,所提方法能够更为准确地提取出故障特征频率,且在分解能力和抑制干扰频率方面更具有优越性。 展开更多
关键词 自适应噪声完整集成经验模态分解 经验模态分解 最大相关峭度反褶积 滚动轴承 故障诊断
下载PDF
集成经验模态分解与深度学习的用户侧净负荷预测算法 被引量:29
9
作者 刘友波 吴浩 +3 位作者 刘挺坚 杨智宇 刘俊勇 李秋航 《电力系统自动化》 EI CSCD 北大核心 2021年第24期57-64,共8页
随着用户侧分布式能源发电容量增长,配电网净负荷需求预测面临着更大困难。为此,提出一种改进的自适应噪声的完全集成经验模态分解(CEEMDAN)和深度信念网络(DBN)结合的用户侧净负荷预测方法。首先,通过CEEMDAN将原始净负荷数据分解为若... 随着用户侧分布式能源发电容量增长,配电网净负荷需求预测面临着更大困难。为此,提出一种改进的自适应噪声的完全集成经验模态分解(CEEMDAN)和深度信念网络(DBN)结合的用户侧净负荷预测方法。首先,通过CEEMDAN将原始净负荷数据分解为若干个频率、幅值不一的本征模态函数(IMF)。然后,配合机器学习智能算法,使用DBN逐一对各个IMF分量进行特征提取和时序预测。最后,将多个目标预测结果累加得到最终用户侧短期净负荷预测结果。采用某地区实际数据进行算例分析,验证了所提CEEMDAN-DBN独立预测模型与直接预测相比,能够辨识各频率负荷分量特性,提高分布式能源与负荷耦合性增强背景下的负荷预测精度。 展开更多
关键词 净负荷预测 自适应噪声的完全集成经验模态分解 深度信念网络 时序预测
下载PDF
基于神经网络集成的B样条经验模态分解端点效应抑制方法 被引量:17
10
作者 孟宗 顾海燕 李姗姗 《机械工程学报》 EI CAS CSCD 北大核心 2013年第9期106-112,共7页
经验模态分解对非线性、非平稳信号进行平稳化处理时表现出特有的分析能力,能够有效获得非平稳信号的时频特征,但是其利用样条曲线构造信号上下包络线的过程中存在严重的端点效应。在分析端点效应产生机理的基础上,提出基于神经网络集成... 经验模态分解对非线性、非平稳信号进行平稳化处理时表现出特有的分析能力,能够有效获得非平稳信号的时频特征,但是其利用样条曲线构造信号上下包络线的过程中存在严重的端点效应。在分析端点效应产生机理的基础上,提出基于神经网络集成的B样条经验模态分解(B-spline empirical mode decomposition,BS-EMD)端点效应抑制方法,研究神经网络集成延拓的原理,利用神经网络集成对数据进行左延拓和右延拓,利用B样条插值函数对延拓后的数据进行插值计算,得到信号的均值曲线,进行经验模式分解,得到本征模函数。仿真和试验结果表明,该方法能有效抑制BS-EMD的端点效应。 展开更多
关键词 神经网络集成 B样条经验模态分解 端点效应 数据延拓
下载PDF
基于集成经验模态分解的高压直流输电线路行波故障测距 被引量:7
11
作者 杨立红 杨明玉 +1 位作者 彭志峰 杨雨昂 《华北电力大学学报(自然科学版)》 CAS 北大核心 2013年第6期33-39,共7页
直流输电线路两端的边界元件会造成行波波头畸变,且过渡电阻和线路色散等因素会进一步增加对波头到达母线时刻进行准确标定的难度。基于行波原理,采用集成经验模态分解(EEMD)算法分解出行波高频分量从而获取测距所需的时间参数,提出一... 直流输电线路两端的边界元件会造成行波波头畸变,且过渡电阻和线路色散等因素会进一步增加对波头到达母线时刻进行准确标定的难度。基于行波原理,采用集成经验模态分解(EEMD)算法分解出行波高频分量从而获取测距所需的时间参数,提出一种高压直流输电线路新型故障测距算法。该算法无需识别行波波头和计算行波波速,不受输电线路弧垂的影响,具有较高的测距精度和可靠性。通过PSCAD和MATLAB联合仿真,结果表明,该测距算法准确可靠,具有较强的鲁棒性。 展开更多
关键词 故障测距 行波 波速 集成经验模态分解 高压直流
下载PDF
基于集成经验模态分解的海杂波去噪 被引量:17
12
作者 行鸿彦 朱清清 《电子学报》 EI CAS CSCD 北大核心 2016年第1期1-7,共7页
针对实际海杂波信号非线性非平稳的特点,提出基于集成经验模态分解(EEMD)的海杂波去噪方法.利用EEMD将含有目标信号的海杂波数据分解成一系列从高频到低频的固有模态函数(IMF),通过各个IMF的自相关,分选出有用信号和噪声分量,对噪声占... 针对实际海杂波信号非线性非平稳的特点,提出基于集成经验模态分解(EEMD)的海杂波去噪方法.利用EEMD将含有目标信号的海杂波数据分解成一系列从高频到低频的固有模态函数(IMF),通过各个IMF的自相关,分选出有用信号和噪声分量,对噪声占主导作用的IMF选用Savitzky Golay(SG)滤波方法进行消噪,将滤波后的模态分量和剩余的分量进行重构得到削噪后的信号.结合最小二乘支持向量机(LSSVM)建立混沌序列的单步预测模型,从预测误差中检测淹没在海杂波背景中的微弱信号,比较去噪前和去噪后的均方根误差,利用均方根误差评价去噪效果.实验结果表明,EEMD算法对海杂波数据去噪是有效的,去噪后所得的均方根误差0.0028比去噪前所得的均方根误差0.0119降低了一个数量级. 展开更多
关键词 海杂波 集成经验模态分解 自相关函数 Savitzky Golay滤波
下载PDF
基于集成经验模态分解和极端梯度提升的雷电预警方法 被引量:19
13
作者 徐伟 夏志祥 行鸿彦 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第8期235-243,共9页
地面大气电场的观测和研究对减少雷电灾害、保障航空航天活动具有重要的意义。传统雷电预警方法忽略了大气电场信号的振荡尺度特性导致检测概率低。从大气电场信号的非线性非平稳特征出发,提出一种基于集成经验模态分解(EEMD)和极端梯... 地面大气电场的观测和研究对减少雷电灾害、保障航空航天活动具有重要的意义。传统雷电预警方法忽略了大气电场信号的振荡尺度特性导致检测概率低。从大气电场信号的非线性非平稳特征出发,提出一种基于集成经验模态分解(EEMD)和极端梯度提升(XGBoost)的雷电预警方法。该方法采用EEMD分解大气电场仪观测的电场信号,计算原始数据和各固有模态函数的样本熵,按随机分量、细节分量、趋势分量进行分类重构,分别提取重构分量的统计和自编码器特征,采用XGBoost算法建立雷电预警模型,并对各分量的分类器进行融合。利用大气电场仪和闪电定位系统观测数据进行了实验研究,分析了算法的性能,相对于普通投票决策方法,检测概率最高提高了4.8%,且虚警率降低5.2%~6.4%。 展开更多
关键词 大气电场 集成经验模态分解 极端梯度提升 检测概率 虚警率
下载PDF
互补集成经验模态分解在MOA监测中的应用 被引量:3
14
作者 何贵先 行鸿彦 +1 位作者 徐伟 季鑫源 《高压电器》 CAS CSCD 北大核心 2018年第12期225-231,共7页
针对金属氧化物避雷器在线监测中提取持续电流信号含噪声的问题,提出了基于互补集成经验模态分解(CEEMDAN)的避雷器持续电流去噪方法。将含噪电流信号分解成一系列固有模态函数(IMF),对分解后的IMF进行自相关分析,选出有用信号和含噪分... 针对金属氧化物避雷器在线监测中提取持续电流信号含噪声的问题,提出了基于互补集成经验模态分解(CEEMDAN)的避雷器持续电流去噪方法。将含噪电流信号分解成一系列固有模态函数(IMF),对分解后的IMF进行自相关分析,选出有用信号和含噪分量,对含噪的IMF进行SG (savitzky-golay)滤波去噪,将滤波后的模态分量与剩余的分量进行重构得到消噪后的持续电流信号。MATLAB仿真结果表明:正常情况和老化情况下的MOA去噪后的持续电流均方根误差(正常:3.209 8×10-5,老化:0.002 5)比去噪前的(正常:2.450 9×10-4,老化:0.017 3)均降低了一个数量级,说明该方法有效消除了噪声对避雷器持续电流信号提取的影响,保证了MOA进一步监测分析的准确性。 展开更多
关键词 互补集成经验模态分解 金属氧化物避雷器 持续电流 自相关函数 SG滤波
下载PDF
基于互补型集成经验模态分解-模糊熵和回声状态网络的短期电力负荷预测 被引量:6
15
作者 李青 李军 马昊 《计算机应用》 CSCD 北大核心 2014年第12期3651-3655,3659,共6页
为了提高短期电力负荷预测的精度,提出一种噪声互补型集成经验模态分解(CEEMD)-模糊熵和泄漏积分型ESN(Li ESN)的组合预测方法。为降低对负荷序列进行局部分析的计算规模以及提高负荷预测的准确性,首先采用CEEMD-模糊熵将负荷时间序列... 为了提高短期电力负荷预测的精度,提出一种噪声互补型集成经验模态分解(CEEMD)-模糊熵和泄漏积分型ESN(Li ESN)的组合预测方法。为降低对负荷序列进行局部分析的计算规模以及提高负荷预测的准确性,首先采用CEEMD-模糊熵将负荷时间序列分解为具有明显复杂度差异的负荷子序列;然后,通过对各子序列进行特性分析,分别构建相应的子Li ESN预测模型;最后将各子序列的预测结果叠加得到最终预测值。将CEEMD-模糊熵结合Li ESN的组合预测方法应用于美国新英格兰地区短期电力负荷实例中,仿真结果表明,所提出的组合预测方法具有很高的预测精度。 展开更多
关键词 集成经验模态分解 回声状态网络 组合模型 负荷预测
下载PDF
基于近似熵和集成经验模态分解的转子多故障诊断方法研究 被引量:3
16
作者 韩中合 徐搏超 +1 位作者 朱霄珣 焦宏超 《中国机械工程》 EI CAS CSCD 北大核心 2016年第16期2186-2189,2248,共5页
为了提高汽轮机转子多故障分类的准确率,提出一种集成经验模态分解(EEMD)、近似熵和支持向量机相结合的多状态分类方法。首先进行EEMD得到各频段的单分量信号;再求出熵值作为故障信号的特征向量输入到基于二叉树的支持向量机中实现多状... 为了提高汽轮机转子多故障分类的准确率,提出一种集成经验模态分解(EEMD)、近似熵和支持向量机相结合的多状态分类方法。首先进行EEMD得到各频段的单分量信号;再求出熵值作为故障信号的特征向量输入到基于二叉树的支持向量机中实现多状态分类。对比近似熵、模糊熵和能量法这三种方法,实验结果验证了利用EEMD和熵理论相结合的方法量化故障信号非线性特征的正确性。同时也表明在欧氏空间中,近似熵值组成的特征向量彼此间的距离最远,分类效果也最好。 展开更多
关键词 集成经验模态分解 近似熵 支持向量机 多故障诊断
下载PDF
基于集成分解的农产品价格预测
17
作者 张博群 孙倩 沈虹 《扬州大学学报(自然科学版)》 CAS 2024年第4期47-55,共9页
深度学习在用于预测非线性时间序列时表现出色,且无须考虑变量之间的内生性问题。将集成经验模态分解(ensemble empirical mode decomposition,EEMD)方法与卷积神经网络(convolutional neural networks,CNN)、长短期记忆模型(long short... 深度学习在用于预测非线性时间序列时表现出色,且无须考虑变量之间的内生性问题。将集成经验模态分解(ensemble empirical mode decomposition,EEMD)方法与卷积神经网络(convolutional neural networks,CNN)、长短期记忆模型(long short-term memory,LSTM)、门控循环单元(gated recurrent units,GRU)相结合,构建基于集成分解的农产品期货价格预测模型。以中国玉米、棉花和大豆期货价格为例,对原始期货价格信号进行EEMD分解,然后将分解向量分别输入深度学习模型中进行训练,最终得出EEMD-GRU模型为最优价格预测模型。结果显示,与单独的深度学习模型相比,该文所提基于集成分解的组合模型在预测准确性方面优势明显,具有更强的泛化能力。 展开更多
关键词 农产品期货 集成经验模态分解 深度学习
下载PDF
基于改进完备集成经验模态分解的钢丝绳缺陷漏磁检测方法 被引量:2
18
作者 钟小勇 陈科安 张小红 《工矿自动化》 北大核心 2022年第7期118-124,共7页
钢丝绳小缺陷信号往往被淹没在股波噪声中,存在钢丝绳小缺陷检测困难、易漏检等问题。针对该问题,提出了一种基于改进完备集成经验模态分解(ICEEMD)的钢丝绳缺陷漏磁检测方法。为了避免钢丝绳表面润滑剂或尘埃对检测信号造成影响,采用... 钢丝绳小缺陷信号往往被淹没在股波噪声中,存在钢丝绳小缺陷检测困难、易漏检等问题。针对该问题,提出了一种基于改进完备集成经验模态分解(ICEEMD)的钢丝绳缺陷漏磁检测方法。为了避免钢丝绳表面润滑剂或尘埃对检测信号造成影响,采用电磁检测法。将ICEEMD、小波阈值滤波(WTF)、维纳滤波(WF)相结合,得到ICEEMD-WTF-WF多级降噪方法:通过ICEEMD分解钢丝绳漏磁信号,得到本征模态函数(IMF)分量;计算IMF分量的能量比、排列熵、互相关系数,取出IMF趋势分量和IMF股波噪声分量,并对股波噪声分量进行WTF,筛选有用的IMF分量重构信号;对重构后的信号进行WF,去除随机噪声。提取降噪后的缺陷特征值,输入BP神经网络并进行训练,识别钢丝绳缺陷漏磁信号。实验结果表明:ICEEMD-WTF-WF多级降噪方法对钢丝绳漏磁信号具有良好的降噪效果,信噪比、峭度指标优于WTF、移动平均滤波和WF;基于ICEEMD-WTF-WF的BP神经网络模型检测耗时短,对小缺陷的平均准判率达到98.13%,能较好地满足钢丝绳缺陷检测要求。 展开更多
关键词 钢丝绳 小缺陷检测 漏磁检测 改进完备集成经验模态分解 小波阈值滤波 维纳滤波 多级降噪
下载PDF
一种集成经验模态分解的样本熵阈值微地震信号降噪方法 被引量:9
19
作者 王亚娟 李怀良 +1 位作者 庹先国 沈统 《物探与化探》 CAS 北大核心 2019年第5期1083-1089,共7页
微地震信号的采集过程中,会不可避免地混合非平稳随机噪声,传统的线性滤波和频谱分析方法对这种混合信号的去噪效果并不理想。针对这一需求,本文提出了一种新的降噪方法。首先对含噪声的微地震信号执行集成经验模态分解(EEMD),获取一系... 微地震信号的采集过程中,会不可避免地混合非平稳随机噪声,传统的线性滤波和频谱分析方法对这种混合信号的去噪效果并不理想。针对这一需求,本文提出了一种新的降噪方法。首先对含噪声的微地震信号执行集成经验模态分解(EEMD),获取一系列不同频率成分的本征模态函数(IMF);为了区分这些IMF分量中的信号和噪声,文中通过计算各个IMF分量的样本熵,根据所设置的样本熵阈值来提取符合微地震信号特征的IMF分量,并对这些IMF分量进行信号重构,由此达到抑制随机噪声的目的。将提出的方法应用于模拟数据和实测微地震数据,均表明该方法具有理想的降噪效果。 展开更多
关键词 微地震信号 集成经验模态分解(EEMD) 样本熵 降噪
下载PDF
基于集成经验模态分解的弹道导弹关机点估计算法
20
作者 朱特浩 陆小科 +1 位作者 胡昌林 郝欣 《现代雷达》 CSCD 北大核心 2020年第5期40-45,共6页
落点估计精度是弹道导弹防御系统最重要的性能指标之一,而关机点时刻是落点估计的重要参考数据之一。文中提出一种基于集成经验模态分解的弹道导弹关机点估计算法,该算法首先采用卡尔曼滤波分析主动段的航迹趋势,并粗定出关机点时刻;然... 落点估计精度是弹道导弹防御系统最重要的性能指标之一,而关机点时刻是落点估计的重要参考数据之一。文中提出一种基于集成经验模态分解的弹道导弹关机点估计算法,该算法首先采用卡尔曼滤波分析主动段的航迹趋势,并粗定出关机点时刻;然后,通过集成经验模态分解进一步提升关机点时刻估计精度;最后,通过仿真实验与常用的滤波估计算法进行了比较。结果表明:文中提出的算法在关机点时刻估计误差和结果得出延迟方面都有一定的改进,对落点估计具有重要的参考价值。 展开更多
关键词 弹道导弹防御系统 关机点估计 卡尔曼滤波 集成经验模态分解
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部