Starting from the governing equations for a quantum magnetoplasma including the electron spin -1/2 effects and quantum Bohm potential, we derive Korteweg-de Vries (KdV) equation of the system of quantum magneto- hyd...Starting from the governing equations for a quantum magnetoplasma including the electron spin -1/2 effects and quantum Bohm potential, we derive Korteweg-de Vries (KdV) equation of the system of quantum magneto- hydrodynamics (QMHD). The amplitude and width of magnetosonic soliton with different parameters in the system are studied. It is found that the normalized Zeeman energy E plays a crucial role, for E ≥ 1 the amplitude τmξ and the width we of solitary wave all decrease as E increases. That is, the introduction of spin quantum force modifies the shape of solitary magnetosonic waves and makes them more narrower and shallower.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.10875098the Natural Science Foundation of Northwest Normal University under Grant No.NWNU-KJCXGC-03-48
文摘Starting from the governing equations for a quantum magnetoplasma including the electron spin -1/2 effects and quantum Bohm potential, we derive Korteweg-de Vries (KdV) equation of the system of quantum magneto- hydrodynamics (QMHD). The amplitude and width of magnetosonic soliton with different parameters in the system are studied. It is found that the normalized Zeeman energy E plays a crucial role, for E ≥ 1 the amplitude τmξ and the width we of solitary wave all decrease as E increases. That is, the introduction of spin quantum force modifies the shape of solitary magnetosonic waves and makes them more narrower and shallower.