Generalized Inversion Method has been used to estimate the spatial variation of site effects,using the digital data of SH-waves recorded by 63 stations in the Capital Circle Region of China from 2001 to 2006.We gained...Generalized Inversion Method has been used to estimate the spatial variation of site effects,using the digital data of SH-waves recorded by 63 stations in the Capital Circle Region of China from 2001 to 2006.We gained the site effects of all stations participating in the calculation.We found that the site effect of rock was stabile and about 1.0 from 1.0Hz to 10.0Hz,while the site effect of deposit was high in low frequencies,about 3 ~ 7 from 1.0Hz to 8.0Hz,and the site effect was protuberant at about 5.0Hz,then fell as the frequency increased.The result shows the shape and intensity of station site effects are mainly influenced by the lithology below the station,and possibly also by the local geological structure.展开更多
An earthquake measuring 5.1 on the Richter scale struck Wen'an county,Hebei Province on July 4,2006. No casualties have been reported,with only slight damage. The disaster level of this event is the slightest on t...An earthquake measuring 5.1 on the Richter scale struck Wen'an county,Hebei Province on July 4,2006. No casualties have been reported,with only slight damage. The disaster level of this event is the slightest on the M4.9~5.1 events record tally since the CCDSN (China Center of Digital Seismic Network) was built in 1999. The epicenter intensity of this earthquake was low,while in areas like Beijing,which is 100km far away,abnormal high intensity zones appeared. This article discusses the reasons behind this abnormal phenomenon,with the diagrams of intensity isolines drawn by the intense seismic stations and networks in the capital circle area as references,as well as the seismogenic mechanism in the source,the seismic histories,the geological structures and the ray pathways of seismic waves in areas within 150km around the epicenter. It was concluded that the special dynamic and geological situations were the main causes for the lower intensity degree and slight damage in the epicenter area,but higher intensity in the surrounding areas.展开更多
基金sponsored by the Special Foundation of China Earthquake Administration (2007-8-26)
文摘Generalized Inversion Method has been used to estimate the spatial variation of site effects,using the digital data of SH-waves recorded by 63 stations in the Capital Circle Region of China from 2001 to 2006.We gained the site effects of all stations participating in the calculation.We found that the site effect of rock was stabile and about 1.0 from 1.0Hz to 10.0Hz,while the site effect of deposit was high in low frequencies,about 3 ~ 7 from 1.0Hz to 8.0Hz,and the site effect was protuberant at about 5.0Hz,then fell as the frequency increased.The result shows the shape and intensity of station site effects are mainly influenced by the lithology below the station,and possibly also by the local geological structure.
基金funded by the project "Demonstration of typical changes of vulne rability of disasters in urban-rural fringe:a case study of seismic disaster in the Beijing-Tianjin-Tangshan region" of National Natural Science Foundation (Grant No.40771011)
文摘An earthquake measuring 5.1 on the Richter scale struck Wen'an county,Hebei Province on July 4,2006. No casualties have been reported,with only slight damage. The disaster level of this event is the slightest on the M4.9~5.1 events record tally since the CCDSN (China Center of Digital Seismic Network) was built in 1999. The epicenter intensity of this earthquake was low,while in areas like Beijing,which is 100km far away,abnormal high intensity zones appeared. This article discusses the reasons behind this abnormal phenomenon,with the diagrams of intensity isolines drawn by the intense seismic stations and networks in the capital circle area as references,as well as the seismogenic mechanism in the source,the seismic histories,the geological structures and the ray pathways of seismic waves in areas within 150km around the epicenter. It was concluded that the special dynamic and geological situations were the main causes for the lower intensity degree and slight damage in the epicenter area,but higher intensity in the surrounding areas.