In this study, we examine the impacts that EVs (electric vehicles) have on vehicle usage patterns and environmental improvements, using our integrated travel demand forecasting model, which can simulate an individua...In this study, we examine the impacts that EVs (electric vehicles) have on vehicle usage patterns and environmental improvements, using our integrated travel demand forecasting model, which can simulate an individual activity-travel behavior in each time period, as well as consider an induced demand by decreasing travel cost. In order to examine the effects that charging/discharging have on the demand in electricity, we analyze scenarios based on the simulation results of the EVs' parking location, parking duration and the battery state of charge. From the simulation, result under the ownership rate of EVs in the Nagoya metropolitan area in 2020 is about 6%, which turns out that the total CO2 emissions have decreased by 4% although the situation of urban transport is not changed. After calculating the electricity demand in each zone using architectural area and basic units of hourly power consumption, we evaluate the effect to decrease the peak load by V2G (vehicle-to-grid). According to the results, if EV drivers charge at home during the night and discharge at work during the day, the electricity demand in Nagoya city increases by approximately 1%, although changes in each individual zone range from -7% to +8%, depending on its characteristics.展开更多
Vehicle emissions are one of the major sources of urban air pollution and are also called mobile source emissions. A large amount of gross vehicle emissions is generated by vehicles commuting between residential homes...Vehicle emissions are one of the major sources of urban air pollution and are also called mobile source emissions. A large amount of gross vehicle emissions is generated by vehicles commuting between residential homes and the workplace. Homebuyers generally prefer to purchase residential houses that are relatively less expensive, albeit at the cost of relatively longer commuting times. Consumers usually consider additional travel time, fuel consumption, and other personally concerned factors, with less apprehension about the extra air pollution possibly generated. In cities with populations between 15,000 and 1,000,000, an increase of one additional minute of average commuting time is associated with a reduction of 1.9 dollars in housing price per square foot (p-value: 0.038). To account for the generation of additional air pollution, this paper numerically characterizes factors related to air pollutants caused by additional travel time due to housing prices. Air pollutants such as CO, CO2, NO2, NO, NOx and SO2 as well as fuel consumption were estimated by MOVES (motor vehicle emissions simulator). The results will be a useful reference to generate recommendations for more efficient reduction of mobile source air pollution in metropolitan areas through joint efforts by government, agencies, the public, and industry from multiple fields including environment protection, land use, housing markets, transportation management, and law enforcement.展开更多
As the largest developing country in the world, China has not be involved in the obligation of emissions reduction in the (〈Kyoto Protocol)) . But it has become the largest CO2 emissions countries in the world. Th...As the largest developing country in the world, China has not be involved in the obligation of emissions reduction in the (〈Kyoto Protocol)) . But it has become the largest CO2 emissions countries in the world. This makes China confronted with more pressure of carbon emissions reduction in the post-Kyoto era, and face great challenges in response to climate change issues. On one hand, China' s economic growth stage has decided that the situation of more energy consumption and increased carbon emissions is diffficult to reverse in the short term; On the other hand, the traditional policy under the control of total amount of carbon emission has largely restricted economic development. If a developing country in economic transition is carried out compulsory absolute amount of carbon reduction policies, its economic activity and social consumption will be imposed additional constraints inevitably, which will eventually lead to lower economic competitiveness and decline in social standards of living. Ultimately it will affect the good effects of carbon emissions reduction, so the policy can not achieve a satisfactory result. This paper introduces the financial mechanism into the carbon market model, extends the time of model from one phase to multi-phase. And this paper tries to establish a cross-time carbon credits trade system, and the current strength of the traditional carbon emission market trade model is extended. The paper designs two type of option mechanism model--call options trade carbon emissions model and put options carbon emissions model. Models' results show that choosing options tool to extend our traditional carbon market model can bring following impacts on carbon market development: trade costs have fallen, the carbon intensity also has descended, and has realized the flow of carbon intensity in diffident time; it enables manufacturers to effectively avoid the risk of carbon emissions trade; it increases the flexibility and maneuverability of the carbon trade market. Finally, the policy recommendations in the financial mechanisms carbon market trade are put forward.展开更多
To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map(EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consis...To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map(EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consists of a 2D building boundary map from top-down view and a 2D road map, which can support localization and advanced map-matching when compared with standard polyline-based maps. The 3D layer includes features such as 3D road model,and building facades with coplanar 3D vertical and horizontal line segments, which can provide the 3D metric features to localize the vehicles and flying-robots in 3D space. Starting from the 2D building boundary and road map, EGMap is initially constructed using feature fusion with geometric constraints under a line feature-based simultaneous localization and mapping(SLAM) framework iteratively and progressively. Then, a local bundle adjustment algorithm is proposed to jointly refine the camera localizations and EGMap features. Furthermore, the issues of uncertainty, memory use, time efficiency and obstacle effect in EGMap construction are discussed and analyzed. Physical experiments show that EGMap can be successfully constructed in large scale urban environment and the construction method is demonstrated to be very accurate and robust.展开更多
文摘In this study, we examine the impacts that EVs (electric vehicles) have on vehicle usage patterns and environmental improvements, using our integrated travel demand forecasting model, which can simulate an individual activity-travel behavior in each time period, as well as consider an induced demand by decreasing travel cost. In order to examine the effects that charging/discharging have on the demand in electricity, we analyze scenarios based on the simulation results of the EVs' parking location, parking duration and the battery state of charge. From the simulation, result under the ownership rate of EVs in the Nagoya metropolitan area in 2020 is about 6%, which turns out that the total CO2 emissions have decreased by 4% although the situation of urban transport is not changed. After calculating the electricity demand in each zone using architectural area and basic units of hourly power consumption, we evaluate the effect to decrease the peak load by V2G (vehicle-to-grid). According to the results, if EV drivers charge at home during the night and discharge at work during the day, the electricity demand in Nagoya city increases by approximately 1%, although changes in each individual zone range from -7% to +8%, depending on its characteristics.
基金The authors acknowledge that this research is supported in part by the United States Tier 1 University Transportation Center TranLIVE # DTRT12GUTC17/KLK900-SB-003, and the NSF (National Science Foundation) under grants #1137732 The opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies.
文摘Vehicle emissions are one of the major sources of urban air pollution and are also called mobile source emissions. A large amount of gross vehicle emissions is generated by vehicles commuting between residential homes and the workplace. Homebuyers generally prefer to purchase residential houses that are relatively less expensive, albeit at the cost of relatively longer commuting times. Consumers usually consider additional travel time, fuel consumption, and other personally concerned factors, with less apprehension about the extra air pollution possibly generated. In cities with populations between 15,000 and 1,000,000, an increase of one additional minute of average commuting time is associated with a reduction of 1.9 dollars in housing price per square foot (p-value: 0.038). To account for the generation of additional air pollution, this paper numerically characterizes factors related to air pollutants caused by additional travel time due to housing prices. Air pollutants such as CO, CO2, NO2, NO, NOx and SO2 as well as fuel consumption were estimated by MOVES (motor vehicle emissions simulator). The results will be a useful reference to generate recommendations for more efficient reduction of mobile source air pollution in metropolitan areas through joint efforts by government, agencies, the public, and industry from multiple fields including environment protection, land use, housing markets, transportation management, and law enforcement.
文摘As the largest developing country in the world, China has not be involved in the obligation of emissions reduction in the (〈Kyoto Protocol)) . But it has become the largest CO2 emissions countries in the world. This makes China confronted with more pressure of carbon emissions reduction in the post-Kyoto era, and face great challenges in response to climate change issues. On one hand, China' s economic growth stage has decided that the situation of more energy consumption and increased carbon emissions is diffficult to reverse in the short term; On the other hand, the traditional policy under the control of total amount of carbon emission has largely restricted economic development. If a developing country in economic transition is carried out compulsory absolute amount of carbon reduction policies, its economic activity and social consumption will be imposed additional constraints inevitably, which will eventually lead to lower economic competitiveness and decline in social standards of living. Ultimately it will affect the good effects of carbon emissions reduction, so the policy can not achieve a satisfactory result. This paper introduces the financial mechanism into the carbon market model, extends the time of model from one phase to multi-phase. And this paper tries to establish a cross-time carbon credits trade system, and the current strength of the traditional carbon emission market trade model is extended. The paper designs two type of option mechanism model--call options trade carbon emissions model and put options carbon emissions model. Models' results show that choosing options tool to extend our traditional carbon market model can bring following impacts on carbon market development: trade costs have fallen, the carbon intensity also has descended, and has realized the flow of carbon intensity in diffident time; it enables manufacturers to effectively avoid the risk of carbon emissions trade; it increases the flexibility and maneuverability of the carbon trade market. Finally, the policy recommendations in the financial mechanisms carbon market trade are put forward.
基金National Natural Science Foundation of China(61305107,U1333109)the Fundamental Research Funds for the Central Universities(3122016B006)the Scientific Research Funds for Civil Aviation University of China(2012QD23X)
文摘To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map(EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consists of a 2D building boundary map from top-down view and a 2D road map, which can support localization and advanced map-matching when compared with standard polyline-based maps. The 3D layer includes features such as 3D road model,and building facades with coplanar 3D vertical and horizontal line segments, which can provide the 3D metric features to localize the vehicles and flying-robots in 3D space. Starting from the 2D building boundary and road map, EGMap is initially constructed using feature fusion with geometric constraints under a line feature-based simultaneous localization and mapping(SLAM) framework iteratively and progressively. Then, a local bundle adjustment algorithm is proposed to jointly refine the camera localizations and EGMap features. Furthermore, the issues of uncertainty, memory use, time efficiency and obstacle effect in EGMap construction are discussed and analyzed. Physical experiments show that EGMap can be successfully constructed in large scale urban environment and the construction method is demonstrated to be very accurate and robust.