The effects of moist and temperature response of coconut fibre reinforced composite have been studied. Tensile and compression tests for samples immersed in 12.5 g/dm3 sodium hydroxide solution and without sodium hydr...The effects of moist and temperature response of coconut fibre reinforced composite have been studied. Tensile and compression tests for samples immersed in 12.5 g/dm3 sodium hydroxide solution and without sodium hydroxide solution were performed using a universal testing machine (Monsanto tensometer). The results from the tensile test indicate that stress is fairly proportional to strain. However, the tensile strength increases (reduction in strain), as the soaking time increases for the treated composites. The untreated samples demonstrate reduced tensile strength compared to the treated composites under hygrothermal conditions. The conditioned samples in each case show better tensile and compressive strength compared to the untreated samples. The plant coconut fibres investigated demonstrate acceptable mechanical properties similar to the synthetic counterparts.展开更多
Municipal solid waste (MSW) and its disposal are gaining significant importance in geotechnical and geoenvironmental engineering. However, conventional research is primarily focused on fresh MSW or MSW that is compa...Municipal solid waste (MSW) and its disposal are gaining significant importance in geotechnical and geoenvironmental engineering. However, conventional research is primarily focused on fresh MSW or MSW that is compacted under its own weight in the landfill. In this work, a series of tests to study the properties of a densified MSW after ground treatment were presented. The tests involved oedometer test, simple shear test, triaxial shear test, and permeability test, which were conducted to investigate the compressibility, shear strength, creep behavior and permeability of the MSW. The results show that the compressibility modulus of the MSW increases as the dry density increases. However, the influence of density on modulus decreases once the density reaches a certain value. Like most soils, the stress-strain curve of the densified MSW can be approximated by a hyperbola in the triaxial shear test. Fibrous components provide additional cohesion for MSW, but have a relatively smaller effect on friction angle. Permeability is also found to be closely related to the dry density of the MSW, i.e., MSW with a higher dry density has a smaller permeability. The permeability coefficient may be less than 10 7 cm/s if the density is high enough.展开更多
A middle size experiental wave generator has been implemented is the Ujikawa Open Laboratory, Disaster Prevention Research Institute, Kyoto University. The generator is composed of a pistontype wave maker, a head stra...A middle size experiental wave generator has been implemented is the Ujikawa Open Laboratory, Disaster Prevention Research Institute, Kyoto University. The generator is composed of a pistontype wave maker, a head strage water tank and a current generator to mainly reproduce long waves like tsunami and storm surge. The paper desribes several experimental series to predict the applicability of the generator to model tests. The three operating sysemes are capable to be controlled in one operating sysytem and start time is contorolled separately according with the target tsunami and storm surge profiles. A sharp tsunami profile is reproduced in adjusting the start timing of piston type wave maker and opening gates of head storage tunk. Any type of tsunami waves are reproduced in the generator and it becomes a storong tool to predict the effective of"resiliency" of hardwares.展开更多
文摘The effects of moist and temperature response of coconut fibre reinforced composite have been studied. Tensile and compression tests for samples immersed in 12.5 g/dm3 sodium hydroxide solution and without sodium hydroxide solution were performed using a universal testing machine (Monsanto tensometer). The results from the tensile test indicate that stress is fairly proportional to strain. However, the tensile strength increases (reduction in strain), as the soaking time increases for the treated composites. The untreated samples demonstrate reduced tensile strength compared to the treated composites under hygrothermal conditions. The conditioned samples in each case show better tensile and compressive strength compared to the untreated samples. The plant coconut fibres investigated demonstrate acceptable mechanical properties similar to the synthetic counterparts.
基金Foundation item: Project(50979047) supported by the National Natural Science Foundation of China Project(2010CB732103) supported by the National Basic Research Program of China Project(2012-KY-02) supported by the State Key Laboratory of Hydroscience and Engineering (Tsinghua University), China
文摘Municipal solid waste (MSW) and its disposal are gaining significant importance in geotechnical and geoenvironmental engineering. However, conventional research is primarily focused on fresh MSW or MSW that is compacted under its own weight in the landfill. In this work, a series of tests to study the properties of a densified MSW after ground treatment were presented. The tests involved oedometer test, simple shear test, triaxial shear test, and permeability test, which were conducted to investigate the compressibility, shear strength, creep behavior and permeability of the MSW. The results show that the compressibility modulus of the MSW increases as the dry density increases. However, the influence of density on modulus decreases once the density reaches a certain value. Like most soils, the stress-strain curve of the densified MSW can be approximated by a hyperbola in the triaxial shear test. Fibrous components provide additional cohesion for MSW, but have a relatively smaller effect on friction angle. Permeability is also found to be closely related to the dry density of the MSW, i.e., MSW with a higher dry density has a smaller permeability. The permeability coefficient may be less than 10 7 cm/s if the density is high enough.
文摘A middle size experiental wave generator has been implemented is the Ujikawa Open Laboratory, Disaster Prevention Research Institute, Kyoto University. The generator is composed of a pistontype wave maker, a head strage water tank and a current generator to mainly reproduce long waves like tsunami and storm surge. The paper desribes several experimental series to predict the applicability of the generator to model tests. The three operating sysemes are capable to be controlled in one operating sysytem and start time is contorolled separately according with the target tsunami and storm surge profiles. A sharp tsunami profile is reproduced in adjusting the start timing of piston type wave maker and opening gates of head storage tunk. Any type of tsunami waves are reproduced in the generator and it becomes a storong tool to predict the effective of"resiliency" of hardwares.