期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
配电自动化主站配变数据优化处理方法研究
1
作者 黄国政 邓瑞麒 +3 位作者 易晋 詹一佳 梁社潮 叶伟铨 《中国高新科技》 2018年第18期94-96,共3页
配电自动化主站系统需要整合的配变数据来源于多个不同的系统。由于各源数据系统存在着不同程度的多余数据和不完整数据,影响了配电自动化主站系统的配变数据整合质量。文章分析了目前主站对配变数据的处理方法,讨论了配变数据处理存在... 配电自动化主站系统需要整合的配变数据来源于多个不同的系统。由于各源数据系统存在着不同程度的多余数据和不完整数据,影响了配电自动化主站系统的配变数据整合质量。文章分析了目前主站对配变数据的处理方法,讨论了配变数据处理存在的不足,并重点研究了通过抽取各数据系统的源数据,利用编程手段完善和纠正配变台账数据的方法,提升了配电自动化主站系统配变数据质量,提高了配网调度对配网的实时管控水平。 展开更多
关键词 电自动化 配变数据 源端数据 计量方式
下载PDF
Unseen head pose prediction using dense multivariate label distribution 被引量:1
2
作者 Gao-li SANG Hu CHEN +1 位作者 Ge HUANG Qi-jun ZHAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第6期516-526,共11页
Accurate head poses are useful for many face-related tasks such as face recognition, gaze estimation,and emotion analysis. Most existing methods estimate head poses that are included in the training data(i.e.,previous... Accurate head poses are useful for many face-related tasks such as face recognition, gaze estimation,and emotion analysis. Most existing methods estimate head poses that are included in the training data(i.e.,previously seen head poses). To predict head poses that are not seen in the training data, some regression-based methods have been proposed. However, they focus on estimating continuous head pose angles, and thus do not systematically evaluate the performance on predicting unseen head poses. In this paper, we use a dense multivariate label distribution(MLD) to represent the pose angle of a face image. By incorporating both seen and unseen pose angles into MLD, the head pose predictor can estimate unseen head poses with an accuracy comparable to that of estimating seen head poses. On the Pointing'04 database, the mean absolute errors of results for yaw and pitch are 4.01?and 2.13?, respectively. In addition, experiments on the CAS-PEAL and CMU Multi-PIE databases show that the proposed dense MLD-based head pose estimation method can obtain the state-of-the-art performance when compared to some existing methods. 展开更多
关键词 Head pose estimation Dense multivariate label distribution Sampling intervals Inconsistent labels
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部