With the growing deployment of smart distribution grid,it has become urgent to investigate the smart distribution grid behavior during transient faults and improve the system stability.The feasibility of segmenting la...With the growing deployment of smart distribution grid,it has become urgent to investigate the smart distribution grid behavior during transient faults and improve the system stability.The feasibility of segmenting large power grids and multiple smart distribution grids interconnections using energy storage technology for improving the system dynamic stability was studied.The segmentation validity of the large power grids and smart distribution grid inverter output interconnections power system using energy storage technology was proved in terms of theoretical analysis.Then,the influences of the energy storage device location and capacity on the proposed method were discussed in detail.The conclusion is obtained that the ESD optimal locations are allocated at the tie line terminal buses in the interconnected grid,respectively.The effectiveness of the proposed method was verified by simulations in an actual power system.展开更多
This paper presents a wavelet-based technique for detection and classification of normal and abnormal conditions that occur on power distribution lines. The proposed technique depends on a sensitive fault detection pa...This paper presents a wavelet-based technique for detection and classification of normal and abnormal conditions that occur on power distribution lines. The proposed technique depends on a sensitive fault detection parameter (denoted DET) calculated from the wavelet multi-resolution decomposition of the three phase currents only. This parameter is fast and sensitive to any small changes in the current signal since it uses the square of the first and second details of the decomposed signals. The simulation results of this study clearly show that the proposed technique can be successfully used to detect and classify not only low-current faults that could not be detected by conventional overcurrent relays but also normal transients like load switching and inrush currents.展开更多
基金Project(N110404031)supported by the Fundamental Research Funds for the Central Universities,China
文摘With the growing deployment of smart distribution grid,it has become urgent to investigate the smart distribution grid behavior during transient faults and improve the system stability.The feasibility of segmenting large power grids and multiple smart distribution grids interconnections using energy storage technology for improving the system dynamic stability was studied.The segmentation validity of the large power grids and smart distribution grid inverter output interconnections power system using energy storage technology was proved in terms of theoretical analysis.Then,the influences of the energy storage device location and capacity on the proposed method were discussed in detail.The conclusion is obtained that the ESD optimal locations are allocated at the tie line terminal buses in the interconnected grid,respectively.The effectiveness of the proposed method was verified by simulations in an actual power system.
文摘This paper presents a wavelet-based technique for detection and classification of normal and abnormal conditions that occur on power distribution lines. The proposed technique depends on a sensitive fault detection parameter (denoted DET) calculated from the wavelet multi-resolution decomposition of the three phase currents only. This parameter is fast and sensitive to any small changes in the current signal since it uses the square of the first and second details of the decomposed signals. The simulation results of this study clearly show that the proposed technique can be successfully used to detect and classify not only low-current faults that could not be detected by conventional overcurrent relays but also normal transients like load switching and inrush currents.