An unsymmetrical quantum key distribution protocol is proposed, in which Greenherger-Horne-Zeilinger (GHZ) triplet states are used to obtain the secret key. Except the lost qubits due to the unperfectness of the phy...An unsymmetrical quantum key distribution protocol is proposed, in which Greenherger-Horne-Zeilinger (GHZ) triplet states are used to obtain the secret key. Except the lost qubits due to the unperfectness of the physical devices, the unsymmetrical characteristic makes all transmitted qubits useful. This leads to:an excellent efficiency, which reaches 100% in an ideal case. The 'security is studied from the aspect of information theory. By using the correlation of the GHZ tripartite entanglement state, eavesdropping can be easily checked out, which indicates that the presented protocol is more secure.展开更多
A peptide nucleic acid (PNA)-peptide conjugated molecule, T'3(AKAE)2, was designed to have both a PNA segment for oligo- nucleotide binding and an ionic self-complementary peptide sequence for self-association. T...A peptide nucleic acid (PNA)-peptide conjugated molecule, T'3(AKAE)2, was designed to have both a PNA segment for oligo- nucleotide binding and an ionic self-complementary peptide sequence for self-association. T'3(AKAE)2 could co-assemble with oligoadenines (d(A)x) to form virus-like supramolecular structures whose morphology showed dependence on the chain length and rigidity of the d(A)x molecules. Smaller nanospheres with diameters of 13.0±2.0 nm were produced in the case of d(A)6. Wormlike aggregates with lengths of 20-50 nm and diameters of 15.0±2.5 nm were found in the cases of d(A)12, d(A)ls, d(A)24 and d(A)30. And larger spherical aggregates with diameters of 18±5 nm came into presence in the cases of d(A)36 and d(A)42+. These nanostructures were suggested to be formed under a cooperative effect of base pair recognition and peptidic association. The study provides insights into the programmed assembly of a multi-components system as well as control of the size and shade of the co-assembled structures, which is of great significance in develouing gene/drug deliverv systems.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 60472018 and 10547125
文摘An unsymmetrical quantum key distribution protocol is proposed, in which Greenherger-Horne-Zeilinger (GHZ) triplet states are used to obtain the secret key. Except the lost qubits due to the unperfectness of the physical devices, the unsymmetrical characteristic makes all transmitted qubits useful. This leads to:an excellent efficiency, which reaches 100% in an ideal case. The 'security is studied from the aspect of information theory. By using the correlation of the GHZ tripartite entanglement state, eavesdropping can be easily checked out, which indicates that the presented protocol is more secure.
基金the National Natural Science Foundation of China (21473255, 21003160)the Fundamental Research Funds for the Central Universities (14CX05040A, 15CX05017A)
文摘A peptide nucleic acid (PNA)-peptide conjugated molecule, T'3(AKAE)2, was designed to have both a PNA segment for oligo- nucleotide binding and an ionic self-complementary peptide sequence for self-association. T'3(AKAE)2 could co-assemble with oligoadenines (d(A)x) to form virus-like supramolecular structures whose morphology showed dependence on the chain length and rigidity of the d(A)x molecules. Smaller nanospheres with diameters of 13.0±2.0 nm were produced in the case of d(A)6. Wormlike aggregates with lengths of 20-50 nm and diameters of 15.0±2.5 nm were found in the cases of d(A)12, d(A)ls, d(A)24 and d(A)30. And larger spherical aggregates with diameters of 18±5 nm came into presence in the cases of d(A)36 and d(A)42+. These nanostructures were suggested to be formed under a cooperative effect of base pair recognition and peptidic association. The study provides insights into the programmed assembly of a multi-components system as well as control of the size and shade of the co-assembled structures, which is of great significance in develouing gene/drug deliverv systems.