Motivated by an animal territoriality model,we consider a centroidal Voronoi tessellation algorithm from a dynamical systems perspective.In doing so,we discuss the stability of an aligned equilibrium configuration for...Motivated by an animal territoriality model,we consider a centroidal Voronoi tessellation algorithm from a dynamical systems perspective.In doing so,we discuss the stability of an aligned equilibrium configuration for a rectangular domain that exhibits interesting symmetry properties.We also demonstrate the procedure for performing a center manifold reduction on the system to extract a set of coordinates which capture the long term dynamics when the system is close to a bifurcation.Bifurcations of the system restricted to the center manifold are then classified and compared to numerical results.Although we analyze a specific set-up,these methods can in principle be applied to any bifurcation point of any equilibrium for any domain.展开更多
文摘Motivated by an animal territoriality model,we consider a centroidal Voronoi tessellation algorithm from a dynamical systems perspective.In doing so,we discuss the stability of an aligned equilibrium configuration for a rectangular domain that exhibits interesting symmetry properties.We also demonstrate the procedure for performing a center manifold reduction on the system to extract a set of coordinates which capture the long term dynamics when the system is close to a bifurcation.Bifurcations of the system restricted to the center manifold are then classified and compared to numerical results.Although we analyze a specific set-up,these methods can in principle be applied to any bifurcation point of any equilibrium for any domain.